BibTex Citation Data :
@article{Medstat8291, author = {Hasbi Yasin and Alan Prahutama and Tiani Utami}, title = {PREDIKSI HARGA SAHAM MENGGUNAKAN SUPPORT VECTOR REGRESSION DENGAN ALGORITMA GRID SEARCH}, journal = {MEDIA STATISTIKA}, volume = {7}, number = {1}, year = {2014}, keywords = {}, abstract = { The stock market has become a popular investment channel in recent years because of the low return rates of other investment. The stock price prediction is in the interest of both private and institution investors. Accurate forecasting of stock prices is an appealing yet difficult activity in the business world. Therefore, stock prices forecasting is regarded as one of the most challenging topics in business. The forecasting techniques used in the literature can be classified into two categories: linear models and non linear models. One of forecasting techniques in nonlinear models is support vector regression (SVR). Basically, SVR adopts the structural risk minimization principle to estimate a function by minimizing an upper bound of the generalization. The optimal parameters of SVR can be use Grid Search Algorithm method. Concept of this method is using cross validation (CV). In this paper, the SVR model use linear kernel function. The accurate prediction of stock price, in telecommunication, is 92.47% for training data and 83.39% for testing data. Keywords: Stock price, SVR, Grid Search, Linear kernel function. }, issn = {2477-0647}, pages = {29--35} doi = {10.14710/medstat.7.1.29-35}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/8291} }
Refworks Citation Data :
The stock market has become a popular investment channel in recent years because of the low return rates of other investment. The stock price prediction is in the interest of both private and institution investors. Accurate forecasting of stock prices is an appealing yet difficult activity in the business world. Therefore, stock prices forecasting is regarded as one of the most challenging topics in business. The forecasting techniques used in the literature can be classified into two categories: linear models and non linear models. One of forecasting techniques in nonlinear models is support vector regression (SVR). Basically, SVR adopts the structural risk minimization principle to estimate a function by minimizing an upper bound of the generalization. The optimal parameters of SVR can be use Grid Search Algorithm method. Concept of this method is using cross validation (CV). In this paper, the SVR model use linear kernel function. The accurate prediction of stock price, in telecommunication, is 92.47% for training data and 83.39% for testing data.
Keywords: Stock price, SVR, Grid Search, Linear kernel function.
Article Metrics:
Last update:
Comparison of Stock Price Predictions Using Support Vector Regression and Recurrent Neural Network Methods
An integrated approach of ensemble learning methods for stock index prediction using investor sentiments
Improving preliminary cost estimation in Indonesia using support vector regression
Last update: 2024-12-14 00:05:03
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: