BibTex Citation Data :
@article{Medstat8489, author = {Hasbi Yasin and Suparti Suparti}, title = {PEMODELAN VOLATILITAS UNTUK PENGHITUNGAN VALUE AT RISK (VaR) MENGGUNAKAN FEED FORWARD NEURAL NETWORK DAN ALGORITMA GENETIKA}, journal = {MEDIA STATISTIKA}, volume = {7}, number = {2}, year = {2014}, keywords = {}, abstract = { High fluctuations in stock returns is one problem that is considered by the investors. Therefore we need a model that is able to predict accurately the volatility of stock returns. One model that can be used is a model Generalized Autoregressive Conditional Heteroskedasticity (GARCH). This model can serve as a model input in the model Feed Forward Neural Network (FFNN) with Genetic Algorithms as a training algorithm, known as GA-Neuro-GARCH. This modeling is one of the alternatives in modeling the volatility of stock returns. This method is able to show a good performance in modeling the volatility of stock returns. The purpose of this study was to determine the stock return volatility models using a model GA-Neuro-GARCH on stock price data of PT. Indofood Sukses Makmur Tbk. The result shows that the determination of the input variables based on the ARIMA (1,0,1) -GARCH (1,1), so that the model used FFNN consists of 2 units of neurons in the input layer, 5 units of neurons in the hidden layer neuron layer and 1 unit in the output layer. then using a genetic algorithm with crossover probability value of 0.4, was obtained that the Mean Absolute Percentage Error (MAPE) of 0,0039%. Keywords : FFNN, Genetic Algorithm, GARCH, Volatility }, issn = {2477-0647}, pages = {53--61} doi = {10.14710/medstat.7.2.53-61}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/8489} }
Refworks Citation Data :
High fluctuations in stock returns is one problem that is considered by the investors. Therefore we need a model that is able to predict accurately the volatility of stock returns. One model that can be used is a model Generalized Autoregressive Conditional Heteroskedasticity (GARCH). This model can serve as a model input in the model Feed Forward Neural Network (FFNN) with Genetic Algorithms as a training algorithm, known as GA-Neuro-GARCH. This modeling is one of the alternatives in modeling the volatility of stock returns. This method is able to show a good performance in modeling the volatility of stock returns. The purpose of this study was to determine the stock return volatility models using a model GA-Neuro-GARCH on stock price data of PT. Indofood Sukses Makmur Tbk. The result shows that the determination of the input variables based on the ARIMA (1,0,1) -GARCH (1,1), so that the model used FFNN consists of 2 units of neurons in the input layer, 5 units of neurons in the hidden layer neuron layer and 1 unit in the output layer. then using a genetic algorithm with crossover probability value of 0.4, was obtained that the Mean Absolute Percentage Error (MAPE) of 0,0039%.
Keywords: FFNN, Genetic Algorithm, GARCH, Volatility
Article Metrics:
Last update:
Last update: 2024-11-21 04:46:30
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: