skip to main content

Land Use Change and Environmental Impacts: A Bibliometric Analysis

*Dian Hudawan Santoso orcid scopus  -  UPN Veteran Yogyakarta, Indonesia
Puryani Puryani  -  UPN Veteran Yogyakarta, Indonesia
Tissia Ayu Algary  -  UPN Veteran Yogyakarta, Indonesia
Mochammad Chaeron  -  UPN Veteran Yogyakarta, Indonesia

Citation Format:
Abstract

Land use change is a critical phenomenon that demands attention, particularly in metropolitan centers and developing cities in Asia and Southeast Asia that are undergoing substantial urbanization. The objective of this study is to examine the repercussions of land use modification on the environment, society, and economy. Additionally, it seeks to assess prevailing research trends in this domain through a bibliometric approach. The research methodology encompasses bibliometric analysis employing the Scopus database, encompassing the collection and filtration of data from 1986 to 2025, yielding 193 pertinent documents. The analysis indicates that publications in this field have exhibited significant an annual growth rate, reflecting a notable increase in scholarly interest in this subject. The study also found that China and the United States are the countries with the highest publication contributions, highlighting the importance of international collaboration in this research. The discussion revealed that land use change contributes to environmental degradation, biodiversity loss, and negative impacts on public health, particularly in developing countries. Moreover, this study identifies the need to expand studies in underrepresented countries and emphasizes the urgency of sustainable policies to address the challenges posed by land use change. The findings of this research are anticipated to offer insights that will inform the development of more effective and sustainable urban management and regional development policies by relevant stakeholders.

Note: This article has supplementary file(s).

Fulltext |  Research Instrument
Cover Letter
Subject
Type Research Instrument
  Download (53KB)    Indexing metadata
 Research Instrument
FORMULIR PERJANJIAN ALIH HAK CIPTA PENERBITAN
Subject
Type Research Instrument
  Download (162KB)    Indexing metadata
Keywords: Land Use Change, Environmental Impacts, Bibliometric Analysis, Urbanization
Funding: LPPM UPN Veteran Yogyakarta fully supported this research with the grant number: 121/UN62.21/DT.07.00/2024

Article Metrics:

  1. Alcántara-Ayala, I., & Goudie, A. S. (Eds.). (2010). Geomorphological Hazards and Disaster Prevention (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511807527
  2. Andrade, A. C., Falcão, L. A. D., Borges, M. A. Z., Leite, M. E., & Espírito Santo, M. M. D. (2024). Are Land Use and Cover Changes and Socioeconomic Factors Associated with the Occurrence of Dengue Fever? A Case Study in Minas Gerais State, Brazil. Resources, 13(3), 38. https://doi.org/10.3390/resources13030038
  3. Barrico, L., & Castro, P. (2016). Urban Biodiversity and Cities’ Sustainable Development. In P. Castro, U. M. Azeiteiro, P. Bacelar-Nicolau, W. Leal Filho, & A. M. Azul (Eds.), Biodiversity and Education for Sustainable Development (pp. 29–42). Springer International Publishing. https://doi.org/10.1007/978-3-319-32318-3_3
  4. Bernatović, I., Gomezel, A. S., & Černe, M. (2021). Mapping the Knowledge-Hiding Field and Its Future Prospects: A Bibliometric Co-Citation, Co-Word, and Coupling Analysis. Knowledge Management Research & Practice, 20(3), 394–409. https://doi.org/10.1080/14778238.2021.1945963
  5. Bojer, A. K., Abshare, M. W., Mesfin, F., & Al-Quraishi, A. M. F. (2025). Assessing climate and land use impacts on surface water yield using remote sensing and machine learning. Scientific Reports, 15(1), 18477. https://doi.org/10.1038/s41598-025-03493-8
  6. Cappelaere, L., Le Cour Grandmaison, J., Martin, N., & Lambert, W. (2021). Amino Acid Supplementation to Reduce Environmental Impacts of Broiler and Pig Production: A Review. Frontiers in Veterinary Science, 8, 689259. https://doi.org/10.3389/fvets.2021.689259
  7. Carpenter, I., Kuemmerle, T., Romero-Muñoz, A., Aguiar, S., Gasparri, I., Lathuillière, M. J., Nanni, S., Ribero, V., & Baumann, M. (2025). Attributing deforestation-driven biodiversity decline in the Gran Chaco to agricultural commodity supply chains. Global Environmental Change, 92, 103011. https://doi.org/10.1016/j.gloenvcha.2025.103011
  8. Ceddia, M. G., & Zepharovich, E. (2017). Jevons paradox and the loss of natural habitat in the Argentinean Chaco: The impact of the indigenous communities’ land titling and the Forest Law in the province of Salta. Land Use Policy, 69, 608–617. https://doi.org/10.1016/j.landusepol.2017.09.044
  9. Estoque, R. C., & Murayama, Y. (2015). Intensity and spatial pattern of urban land changes in the megacities of Southeast Asia. Land Use Policy, 48, 213–222. Scopus. https://doi.org/10.1016/j.landusepol.2015.05.017
  10. Figueroa, H., Grady, C. J., Maria Beatriz de Souza Cortez, Beach, J., Stewart, A., Soltis, P. S., & Smith, S. A. (2023). Land Use Changes Result in Increased Phylogenetic Clustering and Preferential Loss of Species-Rich Sites for Michigan Floral Assemblages. https://doi.org/10.21203/rs.3.rs-2967584/v1
  11. Gills, R., Padua, S., Ramachandran, C., Thomas, S., Rajesh, K. M., Harshitha, R., Varghese, E., Vivekanandan, E., Ratheesh, K. R., & George, G. (2025). Climate change, adaptation pathways, and mitigation measures in coastal Karnataka: Socio-ecological perspectives from marine fishing communities. Proceedings of the Indian National Science Academy. https://doi.org/10.1007/s43538-025-00582-0
  12. Hao, L., Sun, G., Liu, Y., Wan, J., Qin, M., Qian, H., Liu, C., Zheng, J., John, R., Fan, P., & Chen, J. (2015). Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China. Hydrology and Earth System Sciences, 19(7), 3319–3331. https://doi.org/10.5194/hess-19-3319-2015
  13. Harsh, S. (2025). Impact of climate warming and landscape change on monarch butterfly. Journal of Insect Conservation, 29(1), 11. https://doi.org/10.1007/s10841-024-00644-6
  14. Hassan, Md. S., Mahmud-ul-Islam, S., & Rahman, M. T. (2015). Integration of Remote Sensing and GIS to Assess Vulnerability of Environmental Degradation in North-Western Bangladesh. Journal of Geographic Information System, 07(05), 494–505. https://doi.org/10.4236/jgis.2015.75040
  15. Herzog, P. S., Ai, J., & Ashton, J. W. (2022). Applying Bibliometric Techniques: Studying Interdisciplinarity in Higher Education Curriculum. Computation, 10(2), 26. https://doi.org/10.3390/computation10020026
  16. Huang, W., Shrestha, A., Xie, Y., Yan, J., Wang, J., Guo, F., Cao, Y., & Wang, G. (2024). Assessing Four Decades of Land Use and Land Cover Change: Policy Impacts and Environmental Dynamics in the Min River Basin, Fujian, China. Land, 14(1), 11. https://doi.org/10.3390/land14010011
  17. Huth, N. I., Cocks, B., Dalgliesh, N., Poulton, P. L., Marinoni, O., & Garcia, J. N. (2018). Farmers’ perceptions of coexistence between agriculture and a large scale coal seam gas development. Agriculture and Human Values, 35(1), 99–115. https://doi.org/10.1007/s10460-017-9801-0
  18. Iamtrakul, P., Chayphong, S., Raungratanaamporn, I.-S., & Chollacoop, N. (2023). Energy-Related CO2 Emissions and Urbanization in Peri-Urban, Pathum Thani Province, Thailand. In H. Gaber (Ed.), Proceedings of the 5th International Conference on Clean Energy and Electrical Systems (Vol. 1058, pp. 265–276). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3888-9_19
  19. Igarashi, K., Kuraji, K., Tanaka, N., & Aranyabhaga, N. (2019). Prediction of the Impact of Climate Change and Land Use Change on Flood Discharge in the Song Khwae District, Nan Province, Thailand. Journal of Climate Change, 5(1), 1–8. https://doi.org/10.3233/jcc190001
  20. Islam, M. M., Pal, S., Hossain, M. M., Mozumder, M. M. H., & Schneider, P. (2020). Coastal Ecosystem Services, Social Equity, and Blue Growth: A Case Study From South-Eastern Bangladesh. Journal of Marine Science and Engineering, 8(10), 815. https://doi.org/10.3390/jmse8100815
  21. Jhala, Y. V., Mungi, N. A., Gopal, R., & Qureshi, Q. (2025). Tiger recovery amid people and poverty. Science, 387(6733), 505–510. https://doi.org/10.1126/science.adk4827
  22. Kalfas, D., Kalogiannidis, S., Chatzitheodoridis, F., & Toska, E. (2023). Urbanization and Land Use Planning for Achieving the Sustainable Development Goals (SDGs): A Case Study of Greece. Urban Science, 7(2), 43. https://doi.org/10.3390/urbansci7020043
  23. Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939), 528–531. Scopus. https://doi.org/10.1038/nature01675
  24. Kiguchi, M., Takata, K., Hanasaki, N., Archevarahuprok, B., Champathong, A., Ikoma, E., Jaikaeo, C., Kaewrueng, S., Kanae, S., Kazama, S., Kuraji, K., Matsumoto, K., Nakamura, S., Nguyen-Le, D., Noda, K., Piamsa-Nga, N., Raksapatcharawong, M., Rangsiwanichpong, P., Ritphring, S., … Oki, T. (2021). A review of climate-change impact and adaptation studies for the water sector in Thailand. Environmental Research Letters, 16(2). Scopus. https://doi.org/10.1088/1748-9326/abce80
  25. Kılavuz, M., Ağralı, C., & Kanbay, Y. (2025). As the planet warms, women pay the price: The climate change and reproductive health crisis. Journal of the Egyptian Public Health Association, 100(1), 14. https://doi.org/10.1186/s42506-025-00196-w
  26. Lazaro, L. L. B., Usuriaga-Najera, O. C., Neto, A. H., Grimoni, J. A. B., & Jacobi, P. R. (2025). Climate commitments and energy transition pledges in Latin America: Where is the region headed? Energy for Sustainable Development, 88, 101779. https://doi.org/10.1016/j.esd.2025.101779
  27. Long, H., Tang, G., Li, X., & Heilig, G. K. (2007). Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. Journal of Environmental Management, 83(3), 351–364. Scopus. https://doi.org/10.1016/j.jenvman.2006.04.003
  28. Madhok, R. (2025). Infrastructure, Institutions, and the Conservation of Biodiversity in India. Journal of the Association of Environmental and Resource Economists, 12(6), 1705–1745. https://doi.org/10.1086/735284
  29. Maharjan, M., Aryal, A., Man Shakya, B., Talchabhadel, R., Thapa, B. R., & Kumar, S. (2021). Evaluation of Urban Heat Island (UHI) Using Satellite Images in Densely Populated Cities of South Asia. Earth, 2(1), 86–110. https://doi.org/10.3390/earth2010006
  30. Mali, A., Zhen, X., & Bakshi, B. R. (2025). Bridging net-zero, nature-positive, and people-positive goals: A case study in the polyester industry. Computers & Chemical Engineering, 202, 109276. https://doi.org/10.1016/j.compchemeng.2025.109276
  31. Marselle, M. R., Hartig, T., Cox, D. T. C., De Bell, S., Knapp, S., Lindley, S., Triguero-Mas, M., Böhning-Gaese, K., Braubach, M., Cook, P. A., De Vries, S., Heintz-Buschart, A., Hofmann, M., Irvine, K. N., Kabisch, N., Kolek, F., Kraemer, R., Markevych, I., Martens, D., … Bonn, A. (2021). Pathways linking biodiversity to human health: A conceptual framework. Environment International, 150, 106420. https://doi.org/10.1016/j.envint.2021.106420
  32. Martín, G., Erinjery, J. J., Ediriweera, D., Goldstein, E., Somaweera, R., de Silva, H. J., Lalloo, D. G., Iwamura, T., & Murray, K. A. (2024). Effects of global change on snakebite envenoming incidence up to 2050: A modelling assessment. The Lancet Planetary Health, 8(8), e533–e544. Scopus. https://doi.org/10.1016/S2542-5196(24)00141-4
  33. Martín-Antón, M., Del Campo, J. M., Negro, V., Frades, J. L., Moreno Blasco, L. J., & Jiménez Verdejo, J. R. (2020). Land Use and Port-city Integration in Reclamation Areas: A Comparison between Spain and Japan. Journal of Coastal Research, 95(sp1), 278–282. Scopus. https://doi.org/10.2112/SI95-054.1
  34. McKeon, K., Woodruff, J. D., Yellen, B., Fernald, S. H., & Sheehan, M. C. (2022). Invasive water chestnut hinders tidal wetland development. Earth Surface Processes and Landforms, 47(6), 1409–1424. https://doi.org/10.1002/esp.5323
  35. Meineche, A. S., Pedersen, V. D., & Astefanoaei, M. (2024). On the use of open source tools for land use and land cover change monitoring. Proceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems, 541–544. https://doi.org/10.1145/3678717.3691245
  36. Mishra, A., & Arya, D. S. (2024). Assessment of land-use land-cover dynamics and urban heat island effect of Dehradun city, North India: A remote sensing approach. Environment, Development and Sustainability, 26(9), 22421–22447. Scopus. https://doi.org/10.1007/s10668-023-03558-6
  37. Myangan, O., Kawahigashi, M., Oyuntsetseg, B., & Fujitake, N. (2017). Impact of land uses on heavy metal distribution in the Selenga River system in Mongolia. Environmental Earth Sciences, 76(9), 346. https://doi.org/10.1007/s12665-017-6664-z
  38. Nath, R., & Deka, S. (2025). Urbanization and its impact on microclimate dynamics and thermal comfort: A predictive assessment of Guwahati’s evolving landscape. Environmental and Sustainability Indicators, 28, 100964. https://doi.org/10.1016/j.indic.2025.100964
  39. Ntajal, J., Höllermann, B., Falkenberg, T., Kistemann, T., & Evers, M. (2022). Water and Health Nexus—Land Use Dynamics, Flooding, and Water-Borne Diseases in the Odaw River Basin, Ghana. Water, 14(3), 461. https://doi.org/10.3390/w14030461
  40. Nyairo, R., Hasegawa, T., Fujimori, S., Wu, W., & Takahashi, K. (2022). Socio-economic trajectories, urban area expansion and ecosystem conservation affect global potential supply of bioenergy. Biomass and Bioenergy, 159. Scopus. https://doi.org/10.1016/j.biombioe.2022.106426
  41. Painter, L., Nallar, R., Fleytas, M. D. C., Loayza, O., Reinaga, A., & Villalba, L. (2020). Reconciliation of cattle ranching with biodiversity and social inclusion objectives in large private properties in Paraguay and collective indigenous lands in Bolivia. Agricultural Systems, 184, 102861. https://doi.org/10.1016/j.agsy.2020.102861
  42. Pena-Regueiro, J., Sebastiá-Frasquet, M.-T., Estornell, J., & Aguilar-Maldonado, J. A. (2020). Sentinel-2 Application to the Surface Characterization of Small Water Bodies in Wetlands. Water, 12(5), 1487. https://doi.org/10.3390/w12051487
  43. Phanmala, K., Lai, Y., & Xiao, K. (2023). Impact of Land Use Change on the Water Environment of a Key Marsh Area in Vientiane Capital, Laos. Water (Switzerland), 15(24). Scopus. https://doi.org/10.3390/w15244302
  44. Polat, S., Tunç, M., Özşahin, E., Tamam, L., & Göker, P. (2023). Bibliometric Analysis of Articles Published in Cukurova Medical Journal Between 2011 and 2022. Cukurova Medical Journal, 48(4), 1405–1411. https://doi.org/10.17826/cumj.1348988
  45. Pourhashemi, S., Naemi, M., Boroughani, M., & Kambezidis, H. (2025). The effect of land-use forecasting on dust source susceptibility mapping in Iran. Environmental Challenges, 21, 101334. https://doi.org/10.1016/j.envc.2025.101334
  46. Priono, Y., & Ellisa, E. (2025). Riverside Settlements in Palangka Raya City: Balancing Tradition, Urbanization, and Environmental Sustainability. Civil Engineering and Architecture, 13(4), 2876–2894. https://doi.org/10.13189/cea.2025.130406
  47. Proswitz, K., Edward, M. C., Evers, M., Mombo, F., Mpwaga, A., Näschen, K., Sesabo, J., & Höllermann, B. (2021). Complex Socio-Ecological Systems: Translating Narratives into Future Land Use and Land Cover Scenarios in the Kilombero Catchment, Tanzania. Sustainability, 13(12), 6552. https://doi.org/10.3390/su13126552
  48. Ramírez-Cando, L. J., Mora-Ochoa, Y. I., Freire-Sanchez, A. S., & Medina-Rodriguez, B. X. (2025). Life Cycle Sustainability Assessment of Agriproducts in Latin America: Overview Based on Latent Dirichlet Allocation. Sustainability, 17(11), 4954. https://doi.org/10.3390/su17114954
  49. Romero, A., Kremer, R. K., & Marx, W. (2010). The Scientific Road of Manuel Cardona: A Bibliometric Analysis. Annalen Der Physik, 523(1–2), 179–190. https://doi.org/10.1002/andp.201000090
  50. Rony, Md. R. H., Jannat, F. A., Adhikari, A., Ahomed, S., Haque, Md. R., Rahman, Md. Z., & Rahman, Md. M. (2025). The effects of Socio-economic conditions and land use pattern on land surface temperature and urban heat Island at saint martin’s Island in Bangladesh. Theoretical and Applied Climatology, 156(10), 541. https://doi.org/10.1007/s00704-025-05739-x
  51. Rosas, S. R., Kagan, J., Schouten, J. T., Slack, P. A., & Trochim, W. M. K. (2011). Evaluating Research and Impact: A Bibliometric Analysis of Research by the NIH/NIAID HIV/AIDS Clinical Trials Networks. Plos One, 6(3), e17428. https://doi.org/10.1371/journal.pone.0017428
  52. Rudiarto, I., Handayani, W., & Sih Setyono, J. (2018). A Regional Perspective on Urbanization and Climate-Related Disasters in the Northern Coastal Region of Central Java, Indonesia. Land, 7(1), 34. https://doi.org/10.3390/land7010034
  53. Salim, M. Z., Choudhari, N., Kafy, A.-A., Nath, H., Alsulamy, S., Rahaman, Z. A., Aldosary, A. S., Rahmand, M. T., & Al-Ramadan, B. (2024). A comprehensive review of navigating urbanization induced climate change complexities for sustainable groundwater resources management in the Indian subcontinent. Groundwater for Sustainable Development, 25, 101115. https://doi.org/10.1016/j.gsd.2024.101115
  54. Santoso, D.H, Puryani, P., Algary, T. A., Moch. Chaeron, & Hilmi, I. K. (2025). Land Use Change Analysis Using Plugin MOLUSCE in Yogyakarta Urban Agglomeration Area. INSOLOGI: Jurnal Sains Dan Teknologi, 4(2), 160–169. https://doi.org/10.55123/insologi.v4i2.5032
  55. Senyel Kurkcuoglu, M. A., Ozenen-Kavlak, M., Duymus, H., & Cabuk, S. N. (2025). Assessing UHI Impacts of Land Use Changes in Urban Development Areas through LCZ Classification. Computational Urban Science, 5(1), 42. https://doi.org/10.1007/s43762-025-00200-1
  56. Shayiti, B., & Kasimu, A. (2025). Spatiotemporal Variation and Driving Mechanisms of Land Surface Temperature in the Urumqi Metropolitan Area Based on Land Use Change. Land, 14(11), 2252. https://doi.org/10.3390/land14112252
  57. Sperry, R., & Bender, G. (2020). Airport buildings: A key opportunity for sustainability in aviation. Journal of Airport Management, 14(3), 234. https://doi.org/10.69554/ONLE9347
  58. Sun, B., & Robinson, D. (2018). Comparison of Statistical Approaches for Modelling Land-Use Change. Land, 7(4), 144. https://doi.org/10.3390/land7040144
  59. Tomar, S., & Kulkarni, K. S. (2025). Reclaiming cities in India: Nature-based approaches for climate-resilient urban design. Theoretical and Applied Climatology, 156(10), 510. https://doi.org/10.1007/s00704-025-05780-w
  60. Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences, 104(52), 20666–20671. https://doi.org/10.1073/pnas.0704119104
  61. Vadrevu, K. P., & Ohara, T. (2020). Focus on land use cover changes and environmental impacts in South/Southeast Asia. Environmental Research Letters, 15(10). Scopus. https://doi.org/10.1088/1748-9326/abb5cb
  62. Wang, J., Zhou, W., Pickett, S. T. A., Yu, W., & Li, W. (2019). A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Science of the Total Environment, 662, 824–833. Scopus. https://doi.org/10.1016/j.scitotenv.2019.01.260
  63. Wu, K., Li, Y., Peng, P., Li, Y., Peng, S., Lu, P., Zhang, D., & Zhou, S. (2025). Elevated chromium levels and potential health risks among six heavy metals in agricultural soils of China. Environmental Research, 287, 123106. https://doi.org/10.1016/j.envres.2025.123106
  64. Wu, Z., Huang, X., Liu, X., Meadows, M. E., Chen, R., & Li, L. (2025). Land use changes and their effects on poverty in Inner Mongolia, northern China. Geography and Sustainability, 6(4), 100269. https://doi.org/10.1016/j.geosus.2025.100269
  65. Xie, Y., Mei, Y., Guangjin, T., & Xuerong, X. (2005). Socio-economic driving forces of arable land conversion: A case study of Wuxian City, China. Global Environmental Change, 15(3), 238–252. Scopus. https://doi.org/10.1016/j.gloenvcha.2005.03.002
  66. Xiong, W., Li, J., & Liu, B. (2025). Coastal Wetland Conservation and Urban Sustainable Development Synergy Pathway Research: Insights from Qingdao and Weihai for Qinhuangdao. Sustainability, 17(21), 9902. https://doi.org/10.3390/su17219902
  67. Xu, P., Guo, Y., & Fu, B. (2019). Regional Impacts of Climate and Land Cover on Ecosystem Water Retention Services in the Upper Yangtze River Basin. Sustainability, 11(19), 5300. https://doi.org/10.3390/su11195300
  68. Yuan, X., Bai, X., Zhou, Z., Luo, G., Li, J., Ran, C., Zhang, S., Xiong, L., Liao, J., Du, C., Dai, L., Li, Z., Xue, Y., Long, M., Luo, Q., Zhang, X., Li, M., Shen, X., & Yang, S. (2025). Global impacts of land use on terrestrial carbon emissions since 1850. Science of the Total Environment, 963. Scopus. https://doi.org/10.1016/j.scitotenv.2024.178358
  69. Zambrano, L., & González-Salazar, C. (2025). Health in the Time of Nature Crisis. Archives of Medical Research, 56(7), 103256. https://doi.org/10.1016/j.arcmed.2025.103256

Last update:

No citation recorded.

Last update: 2025-12-31 11:35:44

No citation recorded.