skip to main content

MODELLING OF A PORTABLE WIND-POWERED ELECTRICITY GENERATION FOR SHRIMP POND IN KALANGANYAR VILLAGE

*Muhamad Andy Maulana  -  Prodi Teknik Elektro, Fakultas Teknik, Universitas Negeri Surabaya, Jl. Ketintang, Ketintang, Kec. Gayungan, Kota Surabaya, Jawa Timur 60231, Indonesia, Indonesia
Tri Wrahatnolo scopus  -  Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Surabaya, Jl. Ketintang, Ketintang, Kec. Gayungan, Kota Surabaya, Jawa Timur 60231, Indonesia, Indonesia
Dikirim: 28 Apr 2025; Diterbitkan: 31 Jul 2025.
Akses Terbuka Copyright (c) 2025 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari

Currently, power generation for pond operations still relies predominantly on gasoline or diesel powered generators. Shrimp pond areas exhibit significant wind energy potential due to their favorable geographic location.This study investigates the utilization of abundant wind energy by modeling a portable wind turbine system to achieve optimal electrical energy generation. Data collected include generator voltage, generator current, rotational speed (rpm), and wind speed. Experimental evaluation comprised two methods: no-load testing and load testing, conducted over a three-day period with measurements taken daily between 10:00 and 16:00. The portable wind power system was successfully tested and implemented. Under no-load conditions, the generator achieved a maximum average voltage of 30.25 V at 1,392 rpm under a wind speed of 3.16 m/s. Under load conditions, it produced a maximum average voltage of 12.31 V and a current of 0.18 A at 432 rpm with a wind speed of 2.08 m/s. Future developments should focus on increasing generator capacity, optimized blade design, and optimizing the portable wind power system compactness to facilitate easier installation and maintenance.

Fulltext View|Download
Kata Kunci: Wind Energy, Portable Wind Turbine, Renewable Energy, Wind Power System.

Article Metrics:

  1. M. E. Hasan, A. Eltayesh, M. I. Awaad, and H. M. El-Batsh, “Experimental Examination for the Electric Power Generation of a Commercial Small-scale Wind Turbine with Modified Aerodynamic Design,” Alexandria Eng. J., vol. 64, pp. 25–39, 2023, doi: 10.1016/j.aej.2022.08.040
  2. L. N. Azadani, “Vertical axis wind turbines in cluster configurations,” Ocean Eng., vol. 272, no. December 2022, p. 113855, 2023, doi: 10.1016/j.oceaneng.2023.113855
  3. E. Assareh et al., “Assessment of a wind energy installation for powering a residential building in Rome, Italy: Incorporating wind turbines, compressed air energy storage, and a compression chiller based on a machine learning model,” Energy, vol. 320, no. January, p. 135083, 2025, doi: 10.1016/j.energy.2025.135083
  4. A. Khandakar and S. bin A. Kashem, “Feasibility study of Horizontal-Axis Wind Turbine,” Int. J. Technol., vol. 1, no. 2, pp. 140–164, 2020
  5. A. K. Khalil, M.M. Bassuoni, M.F. Obiaa, “Numerical Study of the Effect of Long Shroud Diffuser with and without Plate Obstacle on the Performance of Savonius Wind Turbine Numerical Study of the Effect of Long Shroud Diffuser with and without Plate Obstacle on the Performance of Savonius Wind Tur,” vol. 7, no. 6, 2023
  6. Z. Zhang et al., “Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines,” Energy, vol. 281, no. March, p. 128252, 2023, doi: 10.1016/j.energy.2023.128252
  7. A. Rosato, A. Perrotta, and L. Maffei, “Commercial Small-Scale Horizontal and Vertical Wind Turbines: A Comprehensive Review of Geometry, Materials, Costs and Performance,” Energies , vol. 17, no. 13, pp. 1–43, 2024, doi: 10.3390/en17133125
  8. A. A. Nimje and N. M. Gandhi, “Design and development of small wind turbine for power generation through high velocity exhaust air,” Renew. Energy, vol. 145, pp. 1487–1493, 2020, doi: 10.1016/j.renene.2019.06.065
  9. M. A. Al-Rawajfeh and M. R. Gomaa, “Comparison between horizontal and vertical axis wind turbine,” Int. J. Appl. Power Eng., vol. 12, no. 1, pp. 13–23, 2023, doi: 10.11591/ijape.v12.i1.pp13-23
  10. T. Wilberforce, A. G. Olabi, E. T. Sayed, A. H. Alalmi, and M. A. Abdelkareem, “Wind turbine concepts for domestic wind power generation at low wind quality sites,” J. Clean. Prod., vol. 394, no. October 2022, p. 136137, 2023, doi: 10.1016/j.jclepro.2023.136137
  11. R. R. Novri, “The Analisis Potensi Energi Angin Tambak Untuk Menghasilkan Energi Listrik,” J. Res. Educ. Chem., vol. 3, no. 2, p. 96, 2021, doi: 10.25299/jrec.2021.vol3(2).7165
  12. D. Aufar, P. Pembangkit Listrik Tenaga, and P. Studi Teknologi Rekayasa Pembangkit Energi Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe, “Perencanaan Pembangkit Listrik Tenaga Angin Sumbu Horizontal Sebagai Energi Listrik Alternatif Di Area Tambak Desa Jambo Timu,” J. Tektro, vol. 7, no. 2, pp. 216–224, 2023
  13. L. Saputra and R. W. Arsianti, “Rancang Bangun Turbin Angin Vertikal Portable Berdaya Listrik Rendah,” J. Otomasi, vol. 1, no. 1, pp. 28–36, 2021, [Online]. Available: http://ojs.polmed.ac.id/index.php/JOM
  14. M. A. Ghofur, P. M. I. P, and R. A. Funny, “Perancangan Simulasi Turbin Angin Sumbu Horizontal (TASH) Dengan Variasi Jumlah Blade Dan Variasi Sudut Pitch Menggunakan Aplikasi Q-Blade,” Conf. Senat. STT Adisutjipto Yogyakarta, vol. 6, pp. 133–144, 2020, doi: 10.28989/senatik.v6i0.420
  15. F. Rahman, I. Nurjannah, H. N. Sari, A. Christian, and M. K. Hidayat, “Optimalisasi Metode Blade Turbin Angin Sumbu Horizontal,” Otopro, vol. 18, no. 2, pp. 59–64, 2023, doi: 10.26740/otopro.v18n2.p59-64

Last update:

No citation recorded.

Last update: 2025-07-31 17:36:08

No citation recorded.