The Oxidation of Sulphide Compounds in the Order of Processing Sodium Hydrosulphides

Isma Wulansari, Wahyudi Budi Sediawan, M. Hidayat


DOI: https://doi.org/10.14710/11.1.42-51

Abstract


Oxidation of spent sulfidic caustic consist of SH- ion or NaHS compound by H2O2 in neutral or acidic solution to elemental sulphur may provide a convenient and economical method for the control of sulphide wastes and their associated odors at pulp, paper and textile industry. The effects of total sulphide concentration, isothermal and nonisothermal process, catalyst loading, ratio of SH-/H2O2 and temperature on the kinetics of sulphide oxidation were investigated. Kinetic equations and activation energies of H2O2 and SH- ion to total sulphur and sulphate in aqueous solution for the non catalytic and catalytic oxidation reaction were calculated based on the experimental results. The rate of SSC oxidation was found higher at lower initial sulphide concentration and the rate of sulphide oxidation was found directly proportional to loading and hydrogen peroxide addition. Optimum total sulphide concentration was achieved when sulphide solutions were treated at pH 4 in the presence of H2O2 in the ratios SH-/H2O2 1:5.6. The potential user of H2O2 determine the optimal conditions for control of odor, corrosion and waste treatment cost due to SSC consisting of sulphur ion, sulphate ion, etc. The oxidation of sulphides into sulphates by H2O2 may be applied directly to aqueous wastes containing these odorants.


Keywords


Sodium Hydrosulphide (NaHS); Potassium Permanganate Titration; Oxidation; Hydrogen Peroxide (H2O2)

Full Text:

PDF

References


R. R. Mather and R. H. Wardman, The Chemistry of Textile Fibres, 2nd ed. Inggris: The Royal Society of Chemistry, 2015.

B. Rajganesh, K. L. Sublette, C. Camp, and M. R. Richardson, “Biotreatment of Refinery Spent Sulfidic Caustics,” Biotechnol. Prog., vol. 11, no. 2, pp. 228–230, 1995, doi: 10.1021/bp00032a017.

J. J. Park et al., “Use of spent sulfidic caustic for autotrophic denitrification in the biological nitrogen removal processes: Lab-scale and pilot-scale experiments,” J. Ind. Eng. Chem., vol. 15, no. 3, pp. 316–322, 2009, doi: 10.1016/j.jiec.2008.11.008.

E. Üresin, H. I. Saraç, A. Sarioʇlan, Ş. Ay, and F. Akgün, “An Experimental Study For H2S and CO2 Removal Via Caustic Scrubbing System,” Process Saf. Environ. Prot., vol. 94, pp. 196–202, 2015, doi: 10.1016/j.psep.2014.06.013.

S. W. Kim, S. K. Behera, Y. Jamal, and H. S. Park, “Optimization of Sodium Hydrosulfide Synthesis for Metal Recovery from Wastewater Using Flue Gas Containing H 2 S,” J. Environ. Eng. (United States), vol. 142, no. 9, pp. 1–7, 2016, doi: 10.1061/(ASCE)EE.1943-7870.0000984.

M. N. Shahrak, E. Ebrahimzadeh, and F. Shahraki, “Removal of Hydrogen Sulfide from Hydrocarbon Liquids Using a Caustic Solution,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 37, no. 8, pp. 791–798, 2015, doi: 10.1080/15567036.2011.584121.

J. F. P. e J. C. Afonso, “New Strategies For Treatment and reuse of Spent Sulfidic Caustic Stream From Petroleum Industri,” Quimica, vol. 35, no. 7, p. 1449, 2012.

M. de Graaff, M. F. M. Bijmans, B. Abbas, G. J. W. Euverink, G. Muyzer, and A. J. H. Janssen, “Biological Treatment of Refinery Spent Caustics Under Halo-Alkaline Conditions,” Bioresour. Technol., vol. 102, no. 15, pp. 7257–7264, 2011, doi: 10.1016/j.biortech.2011.04.095.

J. Sipma et al., “Potentials of Biological Oxidation Processes For The Treatment of Spent Sulfidic Caustics Containing Thiols,” Water Res., vol. 38, no. 20, pp. 4331–4340, 2004, doi: https://doi.org/10.1016/j.watres.2004.08.022.

A. J. H. Janssen, G. Lettinga, and A. de Keizer, “Removal of Hydrogen Sulphide From Wastewater and Waste Gases By Biological Conversion To Elemental Sulphur : Colloidal And Interfacial Aspects of Biologically Produced Sulphur Particles,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 151, no. 1, pp. 389–397, 1999, doi: https://doi.org/10.1016/S0927-7757(98)00507-X.

W. Li, Q. liang Zhao, and H. Liu, “Sulfide Removal By Simultaneous Autotrophic and Heterotrophic Desulfurization–Denitrification Process,” J. Hazard. Mater., vol. 162, no. 2–3, pp. 848–853, 2009, doi: 10.1016/j.jhazmat.2008.05.108.

A. Kuhn, M. Chana, and G. Kelsall, “A Review of the Air Oxidation of Aqueous Sulphide Solution,” J. Chem. Technol. Biotechnol. Chem. Technol., vol. 33, no. 8, pp. 406–414, Nov. 2007, doi: 10.1002/jctb.504330804.

C. Ellis, “Wet Air Oxidation of Refinery Spent Caustic,” Environ. Prog., vol. 17, no. 1, pp. 28–30, Jul. 2006, doi: 10.1002/ep.670170116.

P. N. A., K. W. A., and R. J. A., “Use of Iron Salts to Control Dissolved Sulfide in Trunk Sewers,” J. Environ. Eng., vol. 121, no. 11, pp. 824–829, Nov. 1995, doi: 10.1061/(ASCE)0733-9372(1995)121:11(824).

N. Ahmad, S. Maitra, B. K. Dutta, and F. Ahmad, “Remediation of Sulfidic Wastewater by Catalytic Oxidation with Hydrogen Peroxide,” Environ. Sci., vol. 21, pp. 1735–1740, 2009.

D. Mallik and S. K. Chaudhuri, “Air Oxidation of Aqueous Sodium Sulfide Solutions With Coal Fly Ash,” Water Res., vol. 33, no. 2, pp. 585–590, 1999, doi: 10.1016/S0043-1354(98)00205-X.

T. Marina, V. Yelena, and M. Rein, “Advanced Oxidation Processes for Degradation of 2,4-Dichlo- and 2,4-Dimethylphenol,” J. Environ. Eng., vol. 124, no. 8, pp. 690–694, Aug. 1998, doi: 10.1061/(ASCE)0733-9372(1998)124:8(690).

Y. Ueno, A. Williams, and F. E. Murray, “A New Method For Sodium Sulfide Removal From an Aqueous Solution and Application To Industrial Wastewater And Sludge,” Water. Air. Soil Pollut., vol. 11, no. 1, pp. 23–42, 1979, doi: 10.1007/BF00163516.

M. R. Hoffmann, “Kinetics and Mechanism of Oxidation of Hydrogen Sulfide by Hydrogen Peroxide in Acidic Solution Michael,” Environ. Eng. Sci., vol. 11, no. 1, pp. 61–66, 1977, doi: 10.1021/es60124a004.

R. Munter, “Advanced Oxidation Processes-Current Status And Prospects,” Proc. Est. Acad. Sci. Chem., vol. 50, no. 2, pp. 59–80, Jan. 2001.

J. G. Bain, D. W. Blowes, W. D. Robertson, and E. O. Frind, “Modelling of Sulfide Oxidation With Reactive Transport at a Mine Drainage Site,” Journal of Contaminant Hydrology, vol. 41, no. 1–2. pp. 23–47, 2000, doi: 10.1016/S0169-7722(99)00069-8.

W. Spiller, D. Wohrle, G. Schulz-Ekloff, W. T. Ford, G. Schneider, and J. Stark, “Photo-Oxidation of Sodium Sulfide By Sulfonated Phthalocyanines in Oxygen Saturated Aqueous Solution Containing Detergents or Latexes,” J. Photochem. Photobiol. A Chem., vol. 95, no. 2, pp. 161–173, 1996, doi: 10.1016/1010-6030(95)04248-2.

V. Iliev and A. Mihaylova, “Photooxidation of Sodium Sulfide And Sodium Thiosulfate Under Irradiation With Visible Light Catalyzed By Water Soluble Polynuclear Phthalocyanine Complexes,” J. Photochem. Photobiol. A Chem., vol. 149, no. 1, pp. 23–30, 2002, doi: https://doi.org/10.1016/S1010-6030(01)00655-4.

C. A. Linkous, C. Huang, and J. R. Fowler, “UV Photochemical Oxidation of Aqueous Sodium Sulfide To Produce Hydrogen And Sulfur,” J. Photochem. Photobiol. A Chem., vol. 168, no. 3, pp. 153–160, 2004, doi: https://doi.org/10.1016/j.jphotochem.2004.03.028.

F. P. van der Zee, S. Villaverde, P. A. García, and F. Fdz.-Polanco, “Sulfide Removal by Moderate Oxygenation of Anaerobic Sludge,” Bioresour. Technol., vol. 98, no. 3, pp. 518–524, 2007, doi: https://doi.org/10.1016/j.biortech.2006.02.011.

S. W. Poulton, M. D. Krom, J. Van Rijn, and R. Raiswell, “The Use of Hydrous Iron (III) Oxides For The Removal of Hydrogen Sulphide in Aqueous Systems,” Water Res., vol. 36, no. 4, pp. 825–834, 2002, doi: 10.1016/S0043-1354(01)00314-1.

N. Takenaka, S. Furuya, K. Sato, H. Bandow, Y. Maeda, and Y. Furukawa, “Rapid Reaction of Sulfide With Hydrogen Peroxide And Formation of Different Final Products By Freezing Compared To Those In Solution,” Int. J. Chem. Kinet., vol. 35, pp. 198–205, May 2003, doi: 10.1002/kin.10118.

J. H. Clark, Chemistry of Waste Minimization, 1st ed. Chapman & Hall, 1995.

S. D. Faust and O. M. Aly, Chemistry of Water Treatment, 2nd ed. New York: Taylor & Francis Group, LLC, 1998.

D. K. R. Mahadik and D. B. S. Kuchekar, Concise Inorganic Pharmaceutical Chemistry, 11th Editi. India: Nirali Prakashan India, 2008.

M. I. Bowman, “The Reaction Between Potassium Permanganate and Hydrogen Peroxide,” J. Chem. Educ., vol. 26, no. 2, p. 103, Feb. 1949, doi: 10.1021/ed026p103.

D. C. Harris, Quantitative Chemical Analysis, 8th Editio. New York: Clancy Marshall, 2010.

American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 20nd Editi. 1999.

A. E. Lewis, “Review of Metal Sulphide Precipitation,” Hydrometallurgy, vol. 104, no. 2, pp. 222–234, 2010, doi: 10.1016/j.hydromet.2010.06.010.

A. H. M. Veeken, S. de Vries, A. van der Mark, and W. H. Rulkens, “Selective Precipitation of Heavy Metals as Controlled by a Sulfide-Selective Electrode,” Sep. Sci. Technol., vol. 38, no. 1, pp. 1–19, Jan. 2003, doi: 10.1081/SS-120016695.




Published by Waste Resources Research Center (WRRC), Diponegoro University - Indonesia
   
 
WasTech by http://ejournal.undip.ac.id/index.php/wastech is licensed under Creative Commons Attribution-ShareAlike 4.0.