Enhanced biogas production from rice straw with various pretreatment : a review

Fahriya Puspita Sari, Budiyono Budiyono

DOI: https://doi.org/10.12777/wastech.2.1.17-25


Rice straw is one of organic material that can be used for sustainable production of bioenergy and biofuels such as biogas (about 50-75% CH4 and 25-50% CO2). Out of all bioconversion technologies for biogas production, anaerobic digestion (AD) is a most cost-effective bioconversion technology that has been implemented worldwide for commercial production of electricity, heat, and compressed natural gas (CNG) from organic materials. However, the utilization of rice straw for biogas production via anaerobic digestion has not been widely adopted because the complicated structure of the plant cell wall makes it resistant to microbial attack. Pretreatment of recalcitrant rice straw is essential to achieve high biogas yield in the AD process. A number of different pretreatment techniques involving using physical pretreatment (hydrothermal and freeze), chemical pretreatment (sodium carbonate – sodium sulfite, hydrogen peroxide, NMMO, alkaline, and dilute acid) and biological pretreatment (fungal pretreatment) also combined pretretment (microwave irradiation and chemical) approaches have been investigated, but there is no report that systematically compares the performance of these pretreatment methods for application on rice straw for biogas production. This paper reviews the methods that have been studied for pretreatment of rice straw for delignification, reducing sugar, and conversion to biogas. It describes the AD process, structural and compositional properties of rice straw, and various pretreatment techniques, including the pretreatment process, parameters, performance, and advantages vs. drawbacks.


Biogas, Rice straw, Pretreatment, Methane

Full Text:



Cheremisinoff N. (2002). Handbook of water and wastewater treatment technologies. USA: Butterworth-Heinemann.

Deublein D, Steinhauser A. (2008) Biogas from waste and renewable resources. Wiley-VCH Verlag GmbH & co KGaA.

Mussgnug JH, Klassen V, Schluter A, Kruse O. (2010). Microalgae as substrate for fermentative biogas production in a combined biorefinery concept. J Biotechnol;150(1):51–6.

Chandra, R., Takeuchi, H., Hasegawa, T., & Kumar, R. (2012). Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43(1), 273–282. doi:10.1016/j.energy.2012.04.029

http://www.nue.okstate.edu/Crop_Information/ World_Wheat_Production.htm. (2011) [accessed 29.03.11].

Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Applied Energy, 94, 129–140. doi:10.1016/j.apenergy.2012.01.027

Chandra R, Takeuchi H, Hasegawa T. (2012). Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. J Renewable Sustainable Energy Rev 2012;16:1462e76. doi:10. 1016/j.rser.2011.11.035.

Fredriksson H, Baky A, Bernesson S, Nordberg A, Norén O, Hansson PA. (2006). Use of on-farm produced biofuels on organic farms-Evaluation of energy balances and environmental loads for three possible fuels. Agricultural Systems ;89(1):184e203.

Plochl M, Heiermann M. (2006). Biogas farming in central and northern Europe: a strategy for developing countries? Agricultural Engineering International: The CIGR Ejournal ;8(8):1e5.

Zhong W, Zhang Z, Luo Y, Sun S, Qiao W, Xiao M. (2011). Effect of biological pretreatments in enhancing corn straw biogas production. Bioresource Technology ;102:11177e82.

Zhong W, Zhang Z, Qiao W, Fu P, Liu M. (2011). Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion. Renewable Energy ;36:1875e9.

Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35–53. doi:10.1016/j.pecs.2014.01.001

Teghammar, A., Forgács, G., Sárvári Horváth, I., & Taherzadeh, M. J. (2014). Techno-economic study of NMMO pretreatment and biogas production from forest residues. Applied Energy, 116, 125–133. doi:10.1016/j.apenergy.2013.11.053

Fernandes TV, Klaasse Bos GJ, Zeeman G, Sanders JPM, Lier JBV. (2009). Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresour Technol ;100:2575e9.

Liew LN, Shi J, Li Y. (2012). Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy ;46:125e32.

Yang B, Wyman CE. (2008). Pretreatment: the key to unlocking low cost cellulosic ethanol. Biofuel Bioprod Bior ;2:26e40.

Li Y, Park S, Zhu J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev;15:821e6.

Li MF, Fan YM, Xu F, Sun RC, Zhang XL. (2010). Cold sodium hydroxide / urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction. Industrial Crops and Products; 32 : 551 – 9.

Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with - ionic liquids. JACS2002; 124 (18) : 4974 – 5.

Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R. (2010). Hemicelluloses for fuel ethanol : a review. Bioresource Technology ; 101: 4775–800.

Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. (2011). Biomass pretreatment : fundamentals toward application. Biotechnology Advances; 29 : 675–85.

Palmqvist E, Hahn-Hagerda lB. (2000). Fermentation of lignocellulosic hydrolysates. I. Inhibition and detoxification. Bioresource Technology; 74 : 17–24.

Demirbas A. (2008). Heavy metal adsorption onto agro – based waste materials : a review. Journal of Hazardous Materials; 157 : 220–9.

Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. doi:10.1016/j.rser.2013.06.033

Taherzadeh MJ, Karimi K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci;9:1621–51.

Zeng M, Mosier NS, Huang CP, Sherman DM, Ladisch MR. (2007). Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. J Biotechnol Bioeng;97: 265–78

Kaparaju P, Serrano M, Angelidaki I. (2010). Optimization of biogas production from wheat straw stillage in UASB reactor. J Appl Energy;87:3779–83.

Keshwani DR, Cheng JJ. (2009). Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol; 100:1515e23.

Chang, K.-L., Thitikorn-amorn, J., Hsieh, J.-F., Ou, B.-M., Chen, S.-H., Ratanakhanokchai, K., … Chen, S.-T. (2011). Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass and Bioenergy, 35(1), 90–95. doi:10.1016/j.biombioe.2010.08.027

Pinsky NA, Huddleston JM, Jacobson RM, Wollan PC, Poland GA. (2003). Effect of multiple freeze-thaw cycles on detection of measles, mumps, and rubella virus antibodies. Clin Diagn Lab Immunol;10:19e21.

Tuankriangkrai S, Benjakul S. (2010). Effect of modified tapioca starch on the stability of fish mince gels subjected to multiple freeze-thawing. J Muscle Foods;21:399e416.

Gu, F., Yang, L., Jin, Y., Han, Q., Chang, H-m., Jameel, H., Phillips, R. (2012). Green liquor pretreatment for improving enzymatic hydrolysis of corn stover. Bioresour. Technol., http://dx.doi.org/10.1016/j.biortech.2012.08.054.

Yang, L., Cao, J., Jin, Y., Chang, H-m., Jameel, H., Phillips, R., Li, Z. (2012). Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. Bioresour. Technol., http://dx.doi.org/10.1016/j.biortech.2012.08.041.

Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R. (2009). Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour. Technol. 100, 2411–2418.

Yang, L., Cao, J., Jin, Y., Chang, H. M., Jameel, H., Phillips, R., & Li, Z. (2012). Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. Bioresource technology, 124, 283-291.

Gaspar, M., Kalman, G., Reczey, K. (2007). Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem. 42, 1135–1139.

Sun, R.C., Tomkinson, J., Ma, P.L., Liang, S.F. (2000). Comparative study of hemicellulose from rice straw by alkali and hydrogen peroxide treatments. Carbohydr. Polym. 42, 111–122.

Gierer, J. (1985). Chemistry of delignification, part I: general concept and reactions during pulping. Wood Sci. Technol. 19, 289–312.

Teixeira L C, Linden J C, Schroeder H A. (1999). Alkaline and peracetic acid pretreatments of biomass for ethanol production. Applied Biochemistry and Biotechnology, 77, 19-34.

Hendriks ATWM, Zeeman G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol;100:10e8.

Song ZL, Yang GH, Guo Y, Zhang T. (2012). Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. Bioresources;7:3223e36.

Song, Z., Yag, G., Feng, Y., Ren, G., & Han, X. (2013). Pretreatment of Rice Straw by Hydrogen Peroxide for Enhanced Methane Yield. Journal of Integrative Agriculture, 12(7), 1258–1266. doi:10.1016/S2095-3119(13)60355-X

Adorjan I, Sjo¨ berg J, Rosenau T, Hofinger A, Kosma P. (2004). Kinetic and chemical studies on the isomerization of monosaccharides in N-methylmorpholine-N-oxide (NMMO) under lyocell conditions. Carbohydr Res;339:1899.

Zheng Y, Pan Z, Zhang RH. (2009). Overview of fuel ethanol production from lignocellulosic biomass. Int J Agric Biol Eng;2:51e68.

Teghammar, A., Karimi, K., Sárvári Horváth, I., & Taherzadeh, M. J. (2012). Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass and Bioenergy, 36, 116–120. doi:10.1016/j.biombioe.2011.10.019

Jeihanipour A, Karimi K, Taherzadeh MJ. (2009). Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment. Biotechnol Bioeng;105:469.

Shafiei M, Karimi K, Taherzadeh MJ. (2010). Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour Technol;101:4914.

Dadi AP, Schall CA, Varanasi S. (2006). Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng;95: 904e10.

M. T. Holtzapple, R. R. Davison, M. K. Ross et al. (1999). Biomass conversion to mixed alcohol fuels using the MixAlco process. Applied Biochemistry and Biotechnology A, vol. 77–79, pp. 609–631.

Song, Z., Yang, G., Han, X., Feng, Y., & Ren, G. (2013). Optimization of the alkaline pretreatment of rice straw for enhanced methane yield. BioMed Research International, 2013, 968692. doi:10.1155/2013/968692

T. H. Kim, J. S. Kim, C. Sunwoo, and Y. Y. Lee. (2003). Pretreatment of corn stover by aqueous ammonia. Bioresource Technology, vol. 90, no. 1, pp. 39–47.

Y. Chen, R. R. Sharma-Shivappa, D. Keshwani, and C. Chen. (2007). Potential of agricultural residues and hay for bioethanol production. Applied Biochemistry and Biotechnology, vol. 142, no. 3, pp. 276–290.

M. Torre, A. R. Rodriguez, and F. Saura-Calixto. (1992 ). Study of the interactions of calcium ions with lignin, cellulose, and pectin. Journal of Agricultural and Food Chemistry, vol. 40, no. 10, pp. 1762–1766.

He, Y., Pang, Y., Liu, Y., Li, X., & Wang, K. (2008). Physicochemical Characterization of Rice Straw Pretreated with Sodium Hydroxide in the Solid State for Enhancing Biogas Production. Energy & Fuels, 22(4), 2775–2781. doi:10.1021/ef8000967

Chen X. (2012). Development of effective pretreatment and bioconversion systems for converting organic residuals to bioenergy. Davis: University of California. PhD Dissertation.

Sahni, N., & Phutela, U. G. (2013). Comparative profile of paddy straw pretreated with standard and isolated lignocellulolytic fungal cultures, 4(September), 92–97. doi:10.5897/JYFR2013.0118

Zhao, R., Zhang, Z., Zhang, R., Li, M., Lei, Z., Utsumi, M., & Sugiura, N. (2010). Methane production from rice straw pretreated by a mixture of acetic-propionic acid. Bioresource Technology, 101(3), 990–4. doi:10.1016/j.biortech.2009.09.020

Hsu, T.-C., Guo, G.-L., Chen, W.-H., & Hwang, W.-S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology, 101(13), 4907–13. doi:10.1016/j.biortech.2009.10.009

Jing Q, Lü XY. (2007). Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water. Chin J Chem Eng;15:666e9.

Liu CZ, Cheng XY. (2009). Microwave-assisted acid pretreatment for enhancing biogas production from herbal-extraction process residue. Energy Fuel;23:6152e5.

Cheng XY, Liu CZ. (2010). Enhanced biogas production from herbal-extraction process residues by microwave-assisted alkaline pretreatment. J Chem Technol Biotechnol;85:127e31.

Zhu, S., Wu, Y., Yu, Z., Liao, J., & Zhang, Y. (2005). Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 40(9), 3082–3086. doi:10.1016/j.procbio.2005.03.016

Gong, G., Liu, D., & Huang, Y. (2010). Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosystems Engineering, 107(2), 67–73. doi:10.1016/j.biosystemseng.2010.05.012

Singh, R., Tiwari, S., Srivastava, M., & Shukla, A. (2014). Experimental study on the performance of microwave assisted Hydrogen peroxide ( H 2 O 2 ) pretreatment of rice straw, 16(1), 173–181.

Zheng Y, Pan Z, Zhang RH. (2010). Fermentable sugar production for biofuel production. In: Acosta MJ, editor. Advances in energy research, vol. 2. Hauppauge, New York: Nova Science Publishers Inc;. pp. 55e88.


  • There are currently no refbacks.

Published by Waste Resources Research Center (WRRC), Diponegoro University - Indonesia
WasTech by http://ejournal.undip.ac.id/index.php/wastech is licensed under Creative Commons Attribution-ShareAlike 4.0.