skip to main content

EKSTRAKSI SENYAWA BIOAKTIF THEAFLAVIN TEH OOLONG (CAMELLIA SINESIS) DENGAN AIR SEBAGAI GREEN SOLVENT

*Rizka Amalia orcid scopus  -  Program Studi Sarjana Terapan Teknologi Rekayasa Kimia Industri, Sekolah Vokasi, Universitas Diponegoro, Indonesia
Mohamad Endy Yulianto scopus  -  Program Studi Sarjana Terapan Teknologi Rekayasa Kimia Industri, Sekolah Vokasi, Universitas Diponegoro, Indonesia
Susiana Purwantisari  -  Program Studi Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Yusuf Arya Yudanto  -  Program Studi Sarjana Terapan Teknologi Rekayasa Kimia Industri, Sekolah Vokasi, Universitas Diponegoro, Indonesia
Ilyas Teguh Pangestu  -  Program Studi D-III Teknologi Kimia, Sekolah Vokasi, Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Theaflavin, a polyphenolic compounds found  in oolong tea and black tea, thought to have medicinal potency. Theaflavins and their derivatives such as theaflavin gallate have shown a broad spectrum of antiviral activity against several viruses, including influenza A, B and hepatitis C viruses. Previous research show that theaflavins could inhibit RdRp activity through blocking the active site in the catalytic pocket of RdRp in SARS‐CoV‐2, SARS‐CoV and MERS‐CoV.. This research aims to extract theaflavins in oolong tea with water solvent at a temperature of 100oC, pressure > 1 atm and varied extraction times (10-60 minutes). The effect of oolong tea extraction time towards the  theaflavin content was observed. The results showed that with the longer extraction time, the theaflavin levels were reduced due to the degradation of thermal theaflavins into thearubigins. The model exponential equation obtained is  y=14,91488 e-0,2631x + 0,11865, with the R2=0.99161. The best operating conditions was obtained at 10 minutes of extraction time, resulted in 1.19% of the total theaflavin content of oolong tea.

Fulltext View|Download
Keywords: teh oolong; theaflavin; ekstraksi; green solvent; SARS-CoV-2
Funding: universitas diponegoro

Article Metrics:

  1. P. Zhou, X.L. Yang, X.G. Wang, B. Hu, L . Zhang, W. Zhang, 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature. 579, 270–273
  2. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23): 14614–21
  3. Y. Wan, J. Shang, R. Graham, R.S. Baric, F. Li, 2020. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS, J Virol. 94(7), e00127-20
  4. M.A. Tortorici, D. Veesler, 2019. Structural insights into coronavirus entry. Adv Virus Res. 105, 93–116
  5. J. Lung, Y.S. Lin, Y.H. Yang, Y.L. Chou, L.H. Shu, Y.C. Cheng, H.T. Liu, C.Y. Wu, 2020. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. Journal of Medical Virology. 1-5
  6. M.E. Yulianto, V. Paramita, I. Hartati, 2019. Recovery Theaflavin dan Thearubigin dari teh Hitam melalui Ekstraksi Air Subkritis, Laporan penelitian. Tidak Diterbitkan. Sekolah Vokasi. Universitas Diponegoro: Semarang
  7. K. Akita, J. P. Associates, & D. Building, 2008, Patent Application Publication ( 10 ) Pub . No .: US 2008 / 0283851 A1 Patent Application Publication, 1(19)
  8. R.S. Mohamed, G.A. Mansoori, 2002, The Use of Supercritical Fluid Extraction Technology in Food Processing, Food Technology Magazine. London: The World Markets Research Centre
  9. I. Hartati, Y. Anas, L. Kurniasari, 2015, Standardization of Sambiloto (Andrographispaniculata Ness) Extract Obtained by Hydrotropic Microwave Assisted Extraction, International Journal of Pharm Tech Research. 8, 10
  10. M.E. Yulianto, V. Paramita, 2015, Mass transfer coefficient in ginger oil extraction using microwave hydrotropic solution, 2nd International Conference Chemical and Material Engineering
  11. Z. Chao, Y. Ri-fu, & Q. Tai-qiu, 2013, Ultrasound-enhanced subcritical water extraction of polysaccharides from Lycium barbarum L., Separation and Purification Technology. 120, 141-147
  12. A.A. Akuli, A. Pal, G. Bej, T. Dey, A. Ghosh, B. Tudu, N. Bhattacharyya, R. Bandyopadhyay, 2016, A machine vision system for estimation of theaflavins and thearubigins in orthodox black tea, International Journal of Smart Sensing and Intelligent System. 9(2), 731
  13. E.A.H. Roberts, 1962, Economic importance of flavonoid substances: tea fermentation, The Chemistry of Flavonoid Compounds. New York: Pergamon. 468–510
  14. E.A.H. Roberts, R. Smith, 1961, Spectrophotometric measurements of theaflavins and thearubigins in black tea liquors in assessments of quality in teas, Analyst. 86, 94–98
  15. M.A. Bokuchava, N.I. Skobeleva, 1969, The chemistry and biochemistry of tea and tea manufacture, Adv. Food Res. 17, 215–292
  16. H.N. Graham, 1992, Green tea composition, consumption, and polyphenol chemistry, Preventive Med. 21, 334–350
  17. T. Yamanishi, 1995, Special Issue on Tea, Food Reviews International. 11(3), 371-546
  18. W.O. James, E.A. Roberts, H. Beevers H, P.C. De Kock, 1948, The secondary oxidation of amino-acids by the catechol oxidase of belladonna, Biochem J. 43(4), 626–636
  19. E.M. Trautner, & E.A.H. Roberts, 1950, The chemical mechanism of the oxidative deamination of amino acids by catechol and polyphenplase, Ausf. J. Sci. Res. ser. B. 3, 356-380
  20. V.P. Popov, 1956, Oxidation of amino acids in the presence of tannins and polyphenols of tea, Biokhimiya. 21, 383-387

Last update:

  1. Optimization of process parameter for theaflavin extraction from black tea (Camellia sinensis) as an inhibitor potential of rdrp SARS-CoV-2 using response surface methodology

    Rizka Amalia, Mohamad Endy Yulianto, Susiana Purwantisari, Nabil Uzzul Islam, Yusuf Arya Yudanto. THE 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT, EPIDEMIOLOGY AND INFORMATION SYSTEM (ICENIS) 2021: Topic of Energy, Environment, Epidemiology, and Information System, 2683 , 2023. doi: 10.1063/5.0125296

Last update: 2024-11-20 03:17:52

No citation recorded.