skip to main content

ASSESSMENT OF MANGROVE FOREST DEGRADATION THROUGH CANOPY FRACTIONAL COVER IN KARIMUNJAWA ISLAND, CENTRAL JAVA, INDONESIA

*Muhammad Kamal  -  Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia
Hartono Hartono  -  Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia
Pramaditya Wicaksono  -  Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia
Novi Susetyo Adi  -  Research Centre for Coastal and Maritime Resources, The Ministry of Maritime Affairs and Fisheries, Indonesia
Sanjiwana Arjasakusuma  -  Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia

Citation Format:
Abstract
The Karimunjawa Islands mangrove forest has been subjected to various direct and indirect human disturbances in the recent years. If not properly managed, this disturbance will lead to the degradation of mangrove habitat health. Assessing forest canopy fractional cover (fc) using remote sensing data is one way of measuring mangrove forest degradation. This study aims to (1) estimate the forest canopy fc using a semi-empirical method, (2) assess the accuracy of the fc estimation and (3) create mangrove forest degradation from the canopy fc results. A sample set of in-situ fc was collected using the hemispherical camera for model development and accuracy assessment purposes. We developed semi-empirical relationship models between pixel values of ALOS AVNIR-2 image (10 m pixel size) and field fc, using Enhanced Vegetation Index (EVI) as a proxy of the image spectral response. The results show that the EVI provides reasonable estimation accuracy of mangrove canopy fc in Karimunjawa Island with the values ranged from 0.17 to 0.96 (n = 69). The low fc values correspond to vegetation opening and gaps caused by human activities or mangrove dieback. The high fc values correspond to the healthy and dense mangrove stands, especially the Rhizophora sp formation at the seafront. The results of this research justify the use of simple canopy fractional cover model for assessing the mangrove forest degradation status in the study area. Further research is needed to test the applicability of this approach at different sites.
Fulltext View|Download
Keywords: mangroves; degradation; canopy fractional cover; ALOS AVNIR-2; EVI

Article Metrics:

  1. Asner, G. P. (2009). Automated mapping of tropical deforestation and forest degradation: CLASlite. Journal of Applied Remote Sensing, 3(1), 33543. [http://doi.org/10.1117/1.3223675">CrossRef]

  2. Bouvet, M., et al. (2007). Preliminary radiometric calibration assessment of ALOS AVNIR-2. In 2007 IEEE International Geoscience and Remote Sensing Symposium (pp. 2673–2676).

  3. BTNK. (2008). Statistik Balai Taman Nasional Karimunjawa (BTNK) 2008 (pp. 101). Semarang: BTNK, Dirjen Perlindungan Hutan dan Konservasi Alam, Departemen Kehutanan.

  4. BTNK. (2012). Jenis-Jenis Mangrove Taman Nasional Karimunjawa. Semarang: Balai Taman Nasional Karimunjawa.

  5. Defries, R. S., et al. (2000). A new global 1-km dataset of percentage tree cover derived from remote sensing. Global Change Biology, 6(2), 247–254. [http://doi.org/10.1046/j.1365-2486.2000.00296.x">CrossRef]  

  6. Duke, N., et al. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology & Biogeography Letters, 7(1), 27–47.

  7. Franklin, S. E. (2001). Remote sensing for sustainable forest management. CRC Press.

  8. Hashim, M.,et al. (2014). Comparison of ETM+ and MODIS data for tropical forest degradation monitoring in the Peninsular Malaysia. Journal of the Indian Society of Remote Sensing, 42(2), 383–396.

  9. Huete, A., et al. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. [http://doi.org/10.1016/S0034-4257(02)00096-2">CrossRef]   

  10. Jiménez-Muñoz, J. C., et al. (2009). Comparison Between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data Over an Agricultural Area. Sensors, 9(2), 768–793. [http://doi.org/10.3390/s90200768">CrossRef]   

  11. Kamal, M., et al. (2016). Assessment of multi-resolution image data for mangrove leaf area index mapping. Remote Sensing of Environment, 176, 242–254. [http://doi.org/10.1016/j.rse.2016.02.013">CrossRef]   

  12. Kovacs, J. M., et al. (2009). Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach. Environmental Monitoring and Assessment, 157(1–4), 137–149. [http://doi.org/10.1007/s10661-008-0523-z">CrossRef]   

  13. Laongmanee, W., et al. (2013). Assessment of spatial resolution in estimating leaf area index from satellite images: A case study with Avicennia Marina Plantations in Thailand. International Journal of Geoinformatics, 9(3).

  14. Matricardi, E. A. T., et al. (2010). Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sensing of Environment, 114(5), 1117–1129. [http://doi.org/10.1016/j.rse.2010.01.001">CrossRef]   

  15. Skidmore, A. K., et al. (1997). Use of remote sensing and GIS for sustainable land management. ITC Journal, 3(4), 302–315.

  16. Souza, C. M., et al. (2005). Multitemporal analysis of degraded forests in the Southern Brazilian Amazon. Earth Interactions, 9(19), 1–25. [http://doi.org/10.1175/EI132.1">CrossRef]    

  17. Verheyden, A., et al. (2004). Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucronata. Annals of Botany, 94(1), 59–66.

  18. Wang, C., Qi, J., & Cochrane, M. (2005). Assessment of tropical forest degradation with canopy fractional cover from Landsat ETM+ and IKONOS imagery. Earth Interactions, 9(22), 1–18.

  19. Weiss, M., & Baret, F. (2014). CAN-EYE V6. 313 User Manual. Available: http://www6pacainrafr/can-eye/Documentation-Publications/Documentation.

  20. Woodcock, C. E., et al. (1983). Remote sensing for land management and planning. Environmental Management, 7(3), 223–237. [http://doi.org/10.1007/BF01871537">CrossRef]

  21. Xiao, J., & Moody, A. (2005). A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sensing of Environment, 98(2–3), 237–250. [http://doi.org/10.1016/j.rse.2005.07.011">CrossRef]

  22. Zeng, X., et al. (2000). Derivation and Evaluation of Global 1-km Fractional Vegetation Cover Data for Land Modeling. Journal of Applied Meteorology, 39(6), 826–839. [http://doi.org/10.1175/1520-0450(2000)039%3c0826:DAEOGK%3e2.0.CO;2">CrossRef]


Last update:

  1. Image-based tea yield estimation using Landsat-8 OLI and Sentinel-2B images

    Dyah Puteri Ramadanningrum, Muhammad Kamal, Sigit Heru Murti. Remote Sensing Applications: Society and Environment, 20 , 2020. doi: 10.1016/j.rsase.2020.100424
  2. Estimation of Mangrove Fractional Canopy Cover using Sentinel-2A Imagery

    Artha Parela, Muhammad Kamal. 2020 6th International Conference on Science and Technology (ICST), 2020. doi: 10.1109/ICST50505.2020.9732876
  3. Monitoring the Restored Mangrove Condition at Perancak Estuary, Jembrana, Bali, Indonesia from 2001 to 2015

    R Ruslisan, M Kamal, F Sidik. IOP Conference Series: Earth and Environmental Science, 123 , 2018. doi: 10.1088/1755-1315/123/1/012022
  4. Mangrove forest identification using object-based approach classification

    Muhamad Faqih Hidayatullah, Muhammad Kamal, Pramaditya Wicaksono. THE PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON MARITIME EDUCATION AND TRAINING (The 5th ICMET) 2021, 2675 , 2023. doi: 10.1063/5.0114997
  5. Implementation Of Conservation Policy Through The Protection Of Life Support System In The Karimunjawa National Park

    Nur Anisa Eka Ariyani, Kismartini, Hadiyanto, Sudarno, Maryono. E3S Web of Conferences, 31 , 2018. doi: 10.1051/e3sconf/20183108014
  6. Estimation of Fractional Canopy Cover of Bedul Mangrove Forest Using PlanetScope Imagery

    Shifa A Mahardhika, Muhammad Kamal. 2020 6th International Conference on Science and Technology (ICST), 2020. doi: 10.1109/ICST50505.2020.9732791
  7. How Blue Carbon Ecosystems Are Perceived by Local Communities in the Coral Triangle: Comparative and Empirical Examinations in the Philippines and Indonesia

    Jay Mar D. Quevedo, Yuta Uchiyama, Kevin Muhamad Lukman, Ryo Kohsaka. Sustainability, 13 (1), 2020. doi: 10.3390/su13010127
  8. An Integrated Comparative Approach to Estimating Forest Aboveground Carbon Stock Using Advanced Remote Sensing Technologies

    Wenang Anurogo, Luthfiya Ratna Sari, Muhammad Zainuddin Lubis, Daniel Sutopo Pamungkas, Mir'atul Khusna Mufida, Arini Dewi Lestari Situmorang. 2018 International Conference on Applied Engineering (ICAE), 2018. doi: 10.1109/INCAE.2018.8579375
  9. Geographic Object Based Image Analysis (GEOBIA) for Mangrove Canopy Delineation Using Aerial Photography

    M Kamal, T Kanekaputra, R Hermayani, A Juniansah. IOP Conference Series: Earth and Environmental Science, 313 (1), 2019. doi: 10.1088/1755-1315/313/1/012048
  10. Rainfall Variability and Tidal Inundation Influences on Mangrove Greenness in Karimunjawa National Park, Indonesia

    Joko Prihantono, Takashi Nakamura, Kazuo Nadaoka, Anindya Wirasatriya, Novi Susetyo Adi. Sustainability, 14 (14), 2022. doi: 10.3390/su14148948
  11. Spatial Analysis of Land Adjustment as a Rehabilitation Base of Mangrove in Indramayu Regency

    Sodikin, S R P Sitorus, L B Prasetyo, C Kusmana. IOP Conference Series: Earth and Environmental Science, 123 , 2018. doi: 10.1088/1755-1315/123/1/012026
  12. Seasonal groundwater salinity dynamics in the mangrove supratidal zones based on shallow groundwater salinity and electrical resistivity imaging data

    Joko Prihantono, Takashi Nakamura, Kazuo Nadaoka, Tubagus Solihuddin, Dino Gunawan Pryambodo, Muhammad Ramdhan, Novi Susetyo Adi, Ilham, Anindya Wirasatriya, Sugeng Widada. Wetlands Ecology and Management, 31 (3), 2023. doi: 10.1007/s11273-023-09926-3

Last update: 2024-12-11 02:03:46

  1. Image-based tea yield estimation using Landsat-8 OLI and Sentinel-2B images

    Dyah Puteri Ramadanningrum, Muhammad Kamal, Sigit Heru Murti. Remote Sensing Applications: Society and Environment, 20 , 2020. doi: 10.1016/j.rsase.2020.100424
  2. Monitoring the Restored Mangrove Condition at Perancak Estuary, Jembrana, Bali, Indonesia from 2001 to 2015

    R Ruslisan, M Kamal, F Sidik. IOP Conference Series: Earth and Environmental Science, 123 , 2018. doi: 10.1088/1755-1315/123/1/012022
  3. An Integrated Comparative Approach to Estimating Forest Aboveground Carbon Stock Using Advanced Remote Sensing Technologies

    Wenang Anurogo, Luthfiya Ratna Sari, Muhammad Zainuddin Lubis, Daniel Sutopo Pamungkas, Mir'atul Khusna Mufida, Arini Dewi Lestari Situmorang. 2018 International Conference on Applied Engineering (ICAE), 2018. doi: 10.1109/INCAE.2018.8579375
  4. Geographic Object Based Image Analysis (GEOBIA) for Mangrove Canopy Delineation Using Aerial Photography

    M Kamal, T Kanekaputra, R Hermayani, A Juniansah. IOP Conference Series: Earth and Environmental Science, 313 (1), 2019. doi: 10.1088/1755-1315/313/1/012048
  5. Comparing canopy density measurement from UAV and hemispherical photography: An evaluation for medium resolution of remote sensing-based mapping

    Umarhadi D.A.. International Journal of Electrical and Computer Engineering, 11 (1), 2021. doi: 10.11591/ijece.v11i1.pp356-364
  6. Quantifying the impact of industrialization on blue carbon storage in the coastal area of Metropolitan Semarang, Indonesia

    Sejati A.W.. Applied Geography, 124 , 2020. doi: 10.1016/j.apgeog.2020.102319
  7. Spatial Analysis of Land Adjustment as a Rehabilitation Base of Mangrove in Indramayu Regency

    Sodikin, S R P Sitorus, L B Prasetyo, C Kusmana. IOP Conference Series: Earth and Environmental Science, 123 , 2018. doi: 10.1088/1755-1315/123/1/012026