skip to main content

Temperature Acquisition System for Real Time Application of First Velocity Correction by EDM (Electronic Distance Measurement)

*Felipe Andrés Carvajal Rodriguez orcid  -  Federal University of Paraná, Chile
Luis Augusto Koenig Veiga orcid  -  Federal University of Paraná, Brazil
Wilson Alcântara Soares  -  Federal University of Paraná, Brazil

Citation Format:

The first velocity correction is used to correct the measured distance affected by the velocity variation of the electromagnetic wave propagation in a medium. This correction depends on the refractive index of the propagation medium and reference refractive index. The influence of the temperature in the medium refractive index is critical; some estimates establish that variation 1°C causes 1ppm of error in distances. In the measuring processes with total stations, the temperature is usually collected at only one point, for example, in the position where the measuring instrument is setup. However, the wave propagates in a medium of non-constant temperature, where the extremes of the line can present variations and thus this measurement in only one point could be non-representative. In this context, it was developed a low-cost real-time temperature acquisition system. This system provides the temperature values in different locations allowing their monitoring through the time. Experiments realized during the geodetic monitoring of a dam, show variations up to 8°C among geodetic points on the dam and around it. An analysis was development to evaluate the influence of temperature variations on monitoring distances and geodetic coordinate of a 2d network with different approaches (temperature modeling).  The results shows different values for distances (1.0 mm) and coordinates (0.5 mm) depending of the approach choose.

Fulltext View|Download
Keywords: EDM;Refraction;Sensors;Netwokrs
Funding: Felipe Carvajal, Capes number 40001016002P6

Article Metrics:

  1. Agresti, A. (2007). An introduction to categorical data analysis. John Wiley & Sons.

  2. Angus-Leppan, P. V, & Brunner, F. K. (1980). Atmospheric temperature models for short-range EDM. The Canadian Surveyor, 34(2), 153–165.

  3. Artese, S., & Perrelli, M. (2018). Monitoring a landslide with high accuracy by total station: a DTM-based model to correct for the atmospheric effects. Geosciences, 8(2), 46.

  4. Brunner, F. K. (1984). Geodetic refraction. Berlin: Shringer, 216.

  5. Brunner, F. K., & Fraser, C. S. (1977). An atmospheric turbulent transfer model for EDM reduction. Proc. IAG Symp., Wageningen.

  6. Brunner, F. K., & Rüeger, J. M. (1992). Theory of the local scale parameter method for EDM. Bulletin Géodésique, 66(4), 355.

  7. De Rubeis, T., Nardi, I., & Muttillo, M. (2017). Development of a low-cost temperature data monitoring. An upgrade for hot box apparatus. Journal of Physics: Conference Series, 923(1), 12039.

  8. Devices, A. (2020). Low voltage temperature sensors TMP35/TMP36/TMP37. Analog Devices: Norwood, MA, USA.

  9. Fraser, C. S. (1981). A simple atmospheric model for electro-optical EDM reduction. Australian Surveyor, 30(6), 352–362.

  10. Ghilani, C. D. (2017). Adjustment computations: spatial data analysis. John Wiley & Sons.

  11. Maxim, I. (2020). Programmable Resolution 1-Wire Digital Thermometer. Data Sheet DS18B20.

  12. Ogundare, J. O. (2015). Precision surveying: the principles and geomatics practice. John Wiley & Sons.

  13. Robertson, K. D. (1977). The use of atmospheric models with trilateration. Survey Review, 24(186), 179–188.

  14. Rüeger, J. M. (1990). Electronic distance measurement: An introduction. Springer Science & Business Media.

  15. Scaioni, M., Barazzetti, L., Giussani, A., Previtali, M., Roncoroni, F., & Alba, M. I. (2014). Photogrammetric techniques for monitoring tunnel deformation. Earth Science Informatics, 7(2), 83–95.

  16. Soares, W. A. (2006). Investigação de uma modelagem matemática como alternativa para aumento da área de cobertura de estações de referência DGPS. Boletim de Ciências Geodésicas, 12(1).

  17. Solarić, N., Barković, DJuro, & Zrinjski, M. (2012). Automation of the Measurement of Atmospheric Parameters in Precise Distance Measurement. Geodetski List, 66(3), 165–186.

  18. Torge, W., & Müller, J. (2012). Geodesy. de Gruyter.

  19. Ussisoo, I. (1969). Correction problems in electronic distance measurements. Tellus, 21(4), 549–567.

  20. Zocollotii Filho, C. A. (2005). Utilização de Técnicas de Poligonação de Precisão para o Monitoramento de Pontos Localizados em Galerias de Inspeção: Estudo de Caso da Usina Hidrelétrica de Salto Caxias. Boletim de Ciências Geodésicas, 11(2), 287–288.

Last update:

  1. Uncertainty Analysis for Accurate Ground Truth Trajectories with Robotic Total Stations

    Maxime Vaidis, William Dubois, Effie Daum, Damien LaRocque, François Pomerleau. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023. doi: 10.1109/IROS55552.2023.10341529
  2. Horizontal Reference Network Densification by Multiple Free Stations

    Rovane Marcos de França, Ivandro Klein, Luis Augusto Koenig Veiga. Journal of Surveying Engineering, 149 (4), 2023. doi: 10.1061/JSUED2.SUENG-1461
  3. The origin of industrial workers and rural in situ urbanization in Temanggung Regency, Indonesia

    Holi Bina Wijaya, Imam Buchori. International Journal of Urban Sciences, 27 (1), 2023. doi: 10.1080/12265934.2022.2097119

Last update: 2024-02-28 13:00:34

No citation recorded.