skip to main content

Statistical analysis of short-term shoreline change behavior along the southern Cilacap coasts of Indonesia

*Bachtiar W. Mutaqin orcid scopus publons  -  Coastal and Watershed Research Group, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia, Indonesia
Ariko V. Munandar  -  Environmental Science Study Program, Graduate School of Universitas Gadjah Mada, Yogyakarta 55284 Indonesia, Indonesia
Jatmiko Jatmiko  -  Environmental Science Study Program, Graduate School of Universitas Gadjah Mada, Yogyakarta 55284 Indonesia, Indonesia
Rika Harini  -  Environmental Science Study Program, Graduate School of Universitas Gadjah Mada, Yogyakarta 55284 Indonesia, Indonesia
Ig.L. Setyawan Purnama  -  Environmental Science Study Program, Graduate School of Universitas Gadjah Mada, Yogyakarta 55284 Indonesia, Indonesia

Citation Format:
Abstract
There is a threat of extreme waves and a moderate risk level of coastal erosion in Bunton Village. Based on the preliminary assessment, there is huge erosion of the shoreline and visible changes in the shoreline temporally. However, there is no statistical data on short-term shoreline change behavior in this area. Hence, this research aims to analyze statistically the short-term shoreline change behavior to understand the conditions and phenomena that occur on the coast of Bunton Village. Landsat images spanning the years 2002 to 2022, with recording intervals of 5 years each, were used to identify the shoreline data, which was later analyzed using the Digital Shoreline Analysis System (DSAS). Statistical analyses of short-term shoreline change behavior were obtained using the End Point Rate (EPR) and Net Shoreline Movement (NSM) approaches. Over a 20-year period, the Bunton coastal area experiences dynamic changes that are primarily due to erosion, with an average distance change of -255.5 meters and an average speed of -14.6 meters per year (very high erosion). The existence of the electric steam power plant (ESPP) in Adipala, which built a breakwater in 2012, has been proven to increase the erosion process. Shoreline change in this area can affect various landuses and tourism activities as well as trigger environmental problems in the Bunton coastal area.
Fulltext
Keywords: Coastal dynamics; shoreline change rate; erosion; accretion; Cilacap
Funding: Graduate School of Universitas Gadjah Mada Yogyakarta

Article Metrics:

  1. Alwi, M., Mutaqin, B.W., Marfai, M.A. (2023). Shoreline dynamics in the very small islands of Karimunjawa – Indonesia: a preliminary study. Geoplanning: Journal of Geomatics and Planning, 10(1), 73-82. https://doi.org/10.14710/geoplanning.10.1.73-82
  2. Appelquist, L.R., Balstrøm, T. (2015). Application of a new methodology for coastal multi-hazard-assessment & management on the state of Karnataka, India. Journal of Environmental Management 152, 1–10. https://doi.org/10.1016/j.jenvman.2014.12.017
  3. Arjasakusuma, S., Kusuma, S.S., Saringatin, S., Wicaksono, P., Mutaqin, B.W., Rafif, R. (2021). Shoreline Dynamics in East Java Province, Indonesia from 2000 to 2019 Using Multi-sensor Remote Sensing Data. Land. 10(2), 1-17, 100. https://doi.org/10.3390/land10020100
  4. Bell, R., Lawrence, J., Allan, S., Blackett, P., Stephens, S. (2017). Coastal Hazards and Climate Change: Guidance for Local Government. Ministry for the Environment of New Zealand
  5. Bird, E. (2008). Coastal Geomorphology: An Introduction, 2nd Edition. Wiley, 448p
  6. Budiadi, B. (2020). Pendugaan Simpanan Karbon pada Kawasan Rehabilitasi Pesisir Selatan Pulau Jawa. Jurnal Ilmu Kehutanan, 14(1), 71-83. https://doi.org/10.22146/jik.57473
  7. Cescon, A.L., Cooper, J.A.G., Jackson, D.W.T. (2024). Nature and Distribution of Beach Ridges on the Islands of the Greater Caribbean. Journal of Marine Science and Engineering. 12(4), 565. https://doi.org/10.3390/jmse12040565
  8. Dias, G.T.M., Kjerfve, B. (2009). Barrier and Beach Ridge Systems of the Rio de Janeiro Coast. In: Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Lecture Notes in Earth Sciences, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44771-9_7
  9. Gornitz, V. (1991). Global coastal hazards from future sea level rise. Palaeogeography Palaeoclimatology Palaeoecology 89(4), 379–398. https://doi.org/10.1016/0031-0182(91)90173-O
  10. Himmelstoss, E., Henderson, R.E., Kratzmann, M.G., Farris, A.S. (2021). Digital Shoreline Analysis System (DSAS) version 5.1 user guide: U.S. Geological Survey Open-File Report 2021–1091, 104 p., https://doi.org/10.3133/ofr20211091
  11. Isla, M.F., Moyano-Paz, D., FitzGerald, D.M., Simontacchi, L., Veiga, G.D. (2023) Contrasting beach-ridge systems in different types of coastal settings. Earth Surface Processes and Landforms, 48(1), 47–71. https://doi.org/10.1002/esp.5429
  12. Isnain, M.N., Mutaqin, B.W. (2023). Geomorphological and hydro-oceanographic analysis related to the characteristics of marine debris on the south coast of Yogyakarta – Indonesia. Rend. Fis. Acc. Lincei. 34(1), 227-239. https://doi.org/10.1007/s12210-022-01125-1
  13. Kay, R., Adler, J. (2005). Coastal Planning and Management. CRC Press. 400p
  14. Lebreton, L.C.M., Van der Zwet, J., Damsteeg, J-W., Slat, B., Andrady, A., Reisser, J. (2017). River plastic emissions to the world’s oceans. Nat Commun, 8, 15611. https://doi.org/10.1038/ncomms15611
  15. Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., Aarninkhof, S. (2018). The State of the World’s Beaches. Sci Rep 8, 6641. https://doi.org/10.1038/s41598-018-24630-6
  16. Marfai, M.A., Ahmada, B., Mutaqin, B.W., Windayati, R. (2020). Dive Resort Mapping and Network Analysis: Water Resources Management in Pemuteran Coastal Area, Bali Island, Indonesia. Geographia Technica. 15(2), 106-116. http://doi.org/10.21163/GT_2020.152.11
  17. Marfai, M.A., Winastuti, R., Wicaksono, A., Mutaqin, B.W. (2022). Coastal morphodynamic analysis in Buleleng Regency, Bali—Indonesia. Natural Hazards, 111(1), 995–1017. https://doi.org/10.1007/s11069-021-05088-8
  18. Micallef, S., Micallef, A., Galdies, C. (2018). Application of the Coastal Hazard Wheel to assess erosion on the Maltese coast. Ocean and Coastal Management, 156, 209–222. https://doi.org/10.1016/j.ocecoaman.2017.06.005
  19. Mutaqin, B.W. (2017). Shoreline changes analysis in Kuwaru coastal area, Yogyakarta, Indonesia: An application of the Digital Shoreline Analysis System (DSAS). International Journal of Sustainable Development and Planning, 12(7), 1203–1214. https://doi.org/10.2495/SDP-V12-N7-1203-1214
  20. Mutaqin, B.W., Kurniawan, I.A., Airawati, M.N., Marfai, M.A. (2021). Kajian Perubahan Garis Pantai Di Sebagian Wilayah Pesisir Pandeglang, Banten, Periode Tahun 1990-2020. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 14(3), 232–242. https://doi.org/10.21107/jk.v14i3.9832
  21. Mutaqin, B.W., Ningsih, R.L. (2023). Tidal Characteristics in the Southern Waters of Java - Indonesia. Jurnal Geografi. 15(2), 154-164. https://doi.org/10.24114/jg.v15i2.45017
  22. Nassar, K., Fath, H., Mahmod, W.E., Masria, A., Nadaoka, K., Negm, A. (2018). Automatic detection of shoreline change: case of North Sinai coast, Egypt. J Coast Conserv 22, 1057–1083 (2018). https://doi.org/10.1007/s11852-018-0613-1
  23. Ningsih, R.L., Mutaqin, B.W. (2024). Multi-hazard assessment under climate change in the aerotropolis coastal city of Kulon Progo, Yogyakarta – Indonesia. Journal of Coastal Conservation. 28(1), 5. https://doi.org/10.1007/s11852-023-01015-0
  24. Noya, Y.A., Tuahatu, J.W. (2021). Kepadatan dan pola transport sampah laut terapung di pesisir barat perairan Teluk Ambon Luar. Jurnal Penelitian Sains, 23(1), 19-27. https://doi.org/10.56064/jps.v23i1.594
  25. Pinto, Z. (2015). Kajian Perilaku Masyarakat Pesisir yang Mengakibatkan Kerusakan Lingkungan (Studi Kasus di Pantai Kuwaru, Desa Poncosari, Kecamatan Srandakan, Kabupaten Bantul, Provinsi DIY). Jurnal Wilayah dan Lingkungan, 3(3), 163-174. https://doi.org/10.14710/jwl.3.3.163-174
  26. Pribadi, A.H., Suryanti, S., Ain, C. (2020). Dampak Kegiatan Pariwisata terhadap Status Tutupan Terumbu Karang dan Valuasi Ekonomi di Kepulauan Karimunjawa. Management of Aquatic Resources Journal (MAQUARES), 9(1), 72-80. https://doi.org/10.14710/marj.v9i1.27762
  27. Putriany, E., Sejati, S.P. (2023). Preliminary study of sea water intrusion using geographic information system in Temon, Kulon Progo, Yogyakarta, Indonesia. Jurnal Pendidikan Geografi: Kajian Teori Dan Praktek Dalam Bidang Pendidikan Dan Ilmu Geografi 28(2), 193–208. https://doi.org/10.17977/um017v28i22023p193-208
  28. Rangel-Buitrago, N., Neal, W.J. (2018). Coastal Erosion Management. In: Finkl, C., Makowski, C. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-48657-4_409-1
  29. Septiangga, B., Mutaqin, B.W. (2021). Spatio-Temporal Analysis of Wulan Delta in Indonesia: Characteristics, Evolution, And Controlling Factors. Geographia Technica, 16(Special Issue), 43-55. http://doi.org/10.21163/GT_2021.163.04
  30. Sukardi. (2008). Metodologi Penelitian Pendidikan Kompetensi dan Praktiknya. Jakarta: PT. Bumi Aksara
  31. Triatmodjo, B. (2012). Perencanaan Bangunan Pantai. Beta Offset, Yogyakarta. 327p
  32. Vasconcelos, Y., de Paula, D., Ferreira, O., Leisner, M. (2024). Contrasting short-term shoreline behaviour after the construction of sinusoidal groynes in NE Brazil. Journal of South American Earth Sciences, 136, 104832. https://doi.org/10.1016/j.jsames.2024.104832
  33. Wahid, N.M., Mutaqin, B.W. (2024). Tidal fluctuation effect on the characteristics of marine debris in the Kulon Progo beaches of Yogyakarta, Indonesia. Journal of Coastal Conservation. 28(1), 37. https://doi.org/10.1007/s11852-024-01036-3
  34. Widantara, K.W., Mutaqin, B.W. (2024). Multi-hazard assessment in the coastal tourism city of Denpasar, Bali, Indonesia. Natural Hazards. https://doi.org/10.1007/s11069-024-06506-3
  35. Zamroni, A., Sugarbo, O., Trisnaning, P.T., Prasetya, H.N.E. (2021). Seawater intrusion prone areas around Yogyakarta International Airport: a geological approach. IOP Conf Ser: Earth Environ Sci 782:022006. https://doi.org/10.1088/1755-1315/782/2/022006

Last update:

No citation recorded.

Last update: 2024-10-31 00:27:32

No citation recorded.