BibTex Citation Data :
@article{geoplanning66452, author = {J Jumadi and Danardono Danardono and Kuswaji Priyono and Efri Roziaty and Heni Masruroh and Arif Rohman and Choirul Amin and Hamim Hadibasyir and Vidya Fikriyah and Muhammad Nawaz and Farha Sattar and Aynaz Lotfata}, title = {Utilizing Open Access Spatial Data for Flood Risk Mapping: A Case Study in the Upper Solo Watershed}, journal = {Geoplanning: Journal of Geomatics and Planning}, volume = {11}, number = {2}, year = {2024}, keywords = {Natural Hazard, Flood, Risk, GIS, Solo River Watershed}, abstract = { Indonesia is experiencing a rise in natural disasters due to its geographical position within a tropical region, with the Upper Solo River watershed exhibiting a heightened risk of flooding. This region has already suffered numerous floods due to excessive precipitation and insufficient drainage. Susceptibility, hazard, and risk studies have been conducted to investigate this phenomenon but have been limited to specific regions within the catchment area. This study aims to construct a GIS-based flood risk model using Open-Access Spatial Data (OASD) based on diverse physical characteristics, urbanization levels, and population. We used several OASD, including SRTM, Sentinel 2 MSI, GPM v6, NASA-USDA Enhanced SMAP Global Soil Moisture Data, GHS-SMOD R2023A - Global Human Settlement Layers, and GHSL: Global Population Surfaces 1975-2030 (P2023A). The model integrates the risk parameters to identify flood risk using a weighted overlay in ArcGIS. The results demonstrate spatial heterogeneity in flood risk throughout the watershed. The result also reveals that Surakarta City, with a high proportion of its area in the 'High' (57.3%) and 'Very High' (29.54%) risk categories, is at the highest risk of flooding within the watershed. The study enhances understanding of this topic by comprehensively evaluating flood hazards, vulnerabilities, and risks. It highlights the significance of utilizing low-cost OASD to improve flood preparedness and response strategies. }, issn = {2355-6544}, pages = {189--204} doi = {10.14710/geoplanning.11.2.189-204}, url = {https://ejournal.undip.ac.id/index.php/geoplanning/article/view/66452} }
Refworks Citation Data :
Indonesia is experiencing a rise in natural disasters due to its geographical position within a tropical region, with the Upper Solo River watershed exhibiting a heightened risk of flooding. This region has already suffered numerous floods due to excessive precipitation and insufficient drainage. Susceptibility, hazard, and risk studies have been conducted to investigate this phenomenon but have been limited to specific regions within the catchment area. This study aims to construct a GIS-based flood risk model using Open-Access Spatial Data (OASD) based on diverse physical characteristics, urbanization levels, and population. We used several OASD, including SRTM, Sentinel 2 MSI, GPM v6, NASA-USDA Enhanced SMAP Global Soil Moisture Data, GHS-SMOD R2023A - Global Human Settlement Layers, and GHSL: Global Population Surfaces 1975-2030 (P2023A). The model integrates the risk parameters to identify flood risk using a weighted overlay in ArcGIS. The results demonstrate spatial heterogeneity in flood risk throughout the watershed. The result also reveals that Surakarta City, with a high proportion of its area in the 'High' (57.3%) and 'Very High' (29.54%) risk categories, is at the highest risk of flooding within the watershed. The study enhances understanding of this topic by comprehensively evaluating flood hazards, vulnerabilities, and risks. It highlights the significance of utilizing low-cost OASD to improve flood preparedness and response strategies.
Article Metrics:
Absori, A., Hernanda, T., Fitriciada, A., Wardiono, K., & Budiono, A. (2023). Analysis Of The Issues On Bengawan Solo River Basin Management Policies. WSEAS Transactions on Environment and Development, 19, 25–32. https://doi.org/10.37394/232015.2023.19.3">[Crossref]
Amin, M. B. Al, Ilmiaty, R. S., & Marlina, A. (2020). Flood Hazard Mapping in Residential Area Using Hydrodynamic Model HEC-RAS 5.0. Geoplanning: Journal of Geomatics and Planning, 7(1), 25–36. https://doi.org/10.14710/geoplanning.7.1.25-36">[Crossref]
Anna, A. N. (2021). Spatial Modelling of Local Flooding for Hazard Mitigation in Surakarta, Indonesia. International Journal of GEOMATE, 21(87), 145–152. https://doi.org/10.21660/2021.87.j2306">[Crossref]
Ayenew, W. A., & Kebede, H. A. (2023). GIS and remote sensing based flood risk assessment and mapping: The case of Dikala Watershed in Kobo Woreda Amhara Region, Ethiopia. Environmental and Sustainability Indicators, 18, 100243. https://doi.org/10.1016/j.indic.2023.100243">[Crossref[
Bakhtiari, V., Piadeh, F., Chen, A. S., & Behzadian, K. (2024). Stakeholder analysis in the application of cutting-edge digital visualisation technologies for urban flood risk management: A critical review. Expert Systems with Applications, 236, 121426. https://doi.org/10.1016/j.eswa.2023.121426">[Crossref]
Biswajeet, P., & Mardiana, S. (2009). Flood hazrad assessment for cloud prone rainy areas in a typical tropical environment. Disaster Advances, 2(2), 7–15.
Chagas, V. B. P., Chaffe, P. L. B., & Blöschl, G. (2022). Climate and land management accelerate the Brazilian water cycle. Nature Communications, 13(1), 5136. https://doi.org/10.1038/s41467-022-32580-x">[Crossref]
Chakraborty, L., Thistlethwaite, J., Scott, D., Henstra, D., Minano, A., & Rus, H. (2023). Assessing social vulnerability and identifying spatial hotspots of flood risk to inform socially just flood management policy. Risk Analysis, 43(5), 1058–1078. https://doi.org/10.1111/risa.13978">[Crossref]
Chen, A. S., Evans, B., Djordjević, S., & Savić, D. A. (2012). Multi-layered coarse grid modelling in 2D urban flood simulations. Journal of Hydrology, 470–471, 1–11. https://doi.org/10.1016/j.jhydrol.2012.06.022">[Crossref]
Cisternas, P. C., Cifuentes, L. A., Bronfman, N. C., & Repetto, P. B. (2024). The influence of risk awareness and government trust on risk perception and preparedness for natural hazards. Risk Analysis, 44(2), 333–348. https://doi.org/10.1111/risa.14151">[Crossref]
Curebal, I., Efe, R., Ozdemir, H., Soykan, A., & Sönmez, S. (2016). GIS-based approach for flood analysis: case study of Keçidere flash flood event (Turkey). Geocarto International, 31(4), 355–366. https://doi.org/10.1080/10106049.2015.1047411">[Crossref]
Damayanti, S. (2011). Resilience for the 2007 flood event, using community knowledge: A Case in Part of Sukoharjo Regency, Indonesia. University of Twente.
Diriba, D., Takele, T., Karuppannan, S., & Husein, M. (2024). Flood hazard analysis and risk assessment using remote sensing, GIS, and AHP techniques: a case study of the Gidabo Watershed, main Ethiopian Rift, Ethiopia. Geomatics, Natural Hazards and Risk, 15(1), 2361813. https://doi.org/10.1080/19475705.2024.2361813">[Crossref]
Earth Engine Data Catalog. (2023). GHS-SMOD R2023A - Global Human Settlement Layers (1975-2030) | Earth Engine Data Catalog. https://developers.google.com/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_SMOD
Elkhrachy, I. (2015). Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA). The Egyptian Journal of Remote Sensing and Space Science, 18(2), 261–278. https://doi.org/10.1016/j.ejrs.2015.06.007">[Crossref]
European Commission. (2023). Global Human Settlement GHSL Data and tools overview European Commission. https://ghsl.jrc.ec.europa.eu/dataToolsOverview.php
Faisal, B. M. R., & Hayakawa, Y. S. (2023). Geomorphometric characterization and sediment connectivity of the middle Brahmaputra River basin. Geomorphology, 429, 108665. https://doi.org/https:/doi.org/10.1016/j.geomorph.2023.108665">[Crossref]
Fathimah, L., & Dahroni, D. (2014). Tingkat Pengetahuan Siswa Kelas X Dalam Mitigasi Bencana Banjir Di SMA Islam 1 Surakarta. Universitas Muhammadiyah Surakarta.
Ghimire, B., Chen, A. S., Guidolin, M., Keedwell, E. C., Djordjević, S., & Savić, D. A. (2013). Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. Journal of Hydroinformatics, 15(3), 676–686. https://doi.org/10.2166/hydro.2012.245">[Crossref]
Greene, R. G., & Cruise, J. F. (1995). Urban Watershed Modeling Using Geographic Information System. Journal of Water Resources Planning and Management, 121(4), 318–325. https://doi.org/10.1061/(ASCE)0733-9496(1995)121:4(318)">[Crossref]
Gunawan. (2009). Studi banjir Bengawan Solo 2007 untuk peningkatan kinerja mitigasi bencana banjir: Studi kasus pada anak-anak Sungai Bengawan Solo antara Bendungan Colo di Sukoharjo dan Jurug di Surakarta. https://etd.repository.ugm.ac.id/home/detail_pencarian/41549
Haq, M., Akhtar, M., Muhammad, S., Paras, S., & Rahmatullah, J. (2012). Techniques of Remote Sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 15(2), 135–141. https://doi.org/10.1016/j.ejrs.2012.07.002">[Crossref]
Hussain, M., Tayyab, M., Zhang, J., Shah, A. A., Ullah, K., Mehmood, U., & Al-Shaibah, B. (2021). GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan. Sustainability, 13(6), 3126. https://doi.org/10.3390/su13063126">[Crossref]
Islam, M. D. M., & Sado, K. (2000). Development of flood hazard maps of Bangladesh using NOAA-AVHRR images with GIS. Hydrological Sciences Journal, 45(3), 337–355. https://doi.org/10.1080/02626660009492334">[Crossref]
Jamali, B., Löwe, R., Bach, P. M., Urich, C., Arnbjerg-Nielsen, K., & Deletic, A. (2018). A rapid urban flood inundation and damage assessment model. Journal of Hydrology, 564, 1085–1098. https://doi.org/10.1016/j.jhydrol.2018.07.064">[Crossref]
Jumadi, Carver, S., & Quincey, D. (2016). ABM and GIS-based multi-scenarios volcanic evacuation modelling of Merapi. AIP Conference Proceedings, 1730(1), 050005. https://doi.org/10.1063/1.4947401">[Crossref]
Jumadi, J., Novita, S. D., Umrotun, U., Musiyam, M., Nurmantyo, C., Muhammad, S. F., & Ibrahim, M. H. (2024). Remote Sensing and GIS-Driven Model for Flood Susceptibility Assessment in the Upper Solo River Watershed. Geographia Technica, 19(2/2024), 33–45. https://doi.org/10.21163/GT_2024.192.03">[Crossref]
Komolafe, A. A., Awe, B. S., Olorunfemi, I. E., & Oguntunde, P. G. (2020). Modelling flood-prone area and vulnerability using integration of multi-criteria analysis and HAND model in the Ogun River Basin, Nigeria. Hydrological Sciences Journal, 65(10), 1766–1783. https://doi.org/10.1080/02626667.2020.1764960">[Crossref]
Li, Y., Gao, J., Yin, J., Liu, L., Zhang, C., & Wu, S. (2024). Flood Risk Assessment of Areas under Urbanization in Chongqing, China, by Integrating Multi-Models. Remote Sensing, 16(2), 219. https://doi.org/10.3390/rs16020219">[Crossref]
Liu, D., & Li, Y. (2016). Social vulnerability of rural households to flood hazards in western mountainous regions of Henan province, China. Natural Hazards and Earth System Sciences, 16(5), 1123–1134. https://doi.org/10.5194/nhess-16-1123-2016">[Crossref]
Marhaento, H., Booij, M. J., & Ahmed, N. (2021). Quantifying relative contribution of land use change and climate change to streamflow alteration in the Bengawan Solo River, Indonesia. Hydrological Sciences Journal, 66(6), 1059–1068. https://doi.org/10.1080/02626667.2021.1921182">[Crossref]
Melchiorri, M. (2022). The global human settlement layer sets a new standard for global urban data reporting with the urban centre database. Frontiers in Environmental Science, 10, 1003862. https://doi.org/10.3389/fenvs.2022.1003862">[Crossref]
Mukherjee, F., & Singh, D. (2020). Detecting flood prone areas in Harris County: a GIS based analysis. GeoJournal, 85(3), 647–663. https://doi.org/10.1007/s10708-019-09984-2">[Crossref]
Muryani, C., Koesuma, S., & Yusup, Y. (2021). People Perception and Participation in Disaster Risk Reduction at Surakarta City, Central Java, Indonesia. GeoEco, 7(1), 96–105.
Mustikaningrum, M., Widhatama, A. F., Widantara, K. W., Ibrohim, M., Hibatullah, M. F., Larasati, R. A. P., Utami, S., & Hadmoko, D. S. (2023). Multi-Hazard Analysis in Gunungkidul Regency Using Spatial Multi-Criteria Evaluation. Forum Geografi, 37(1). https://doi.org/10.23917/forgeo.v37i1.19041">[Crossref]
Nada, F. M. H., Nugroho, N. P., & Sofwa, N. B. M. (2023). Lake and Stream Buffer Zone Widths’ Effects on Nutrient Export to Lake Rawapening, Central Java, Indonesia: A Simple Simulation Study. Forum Geografi, 37(1). https://doi.org/10.23917/forgeo.v37i1.21537">[Crossref]
Negese, A., Worku, D., Shitaye, A., & Getnet, H. (2022). Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot district, northwestern Ethiopia. Applied Water Science, 12(12), 255. https://doi.org/10.1007/s13201-022-01772-7">[Crossref]
Orru, K., Klaos, M., Nero, K., Gabel, F., Hansson, S., & Nævestad, T.-O. (2023). Imagining and assessing future risks: A dynamic scenario-based social vulnerability analysis framework for disaster planning and response. Journal of Contingencies and Crisis Management, 31(4), 995–1008.
Osman, S. A., & Das, J. (2023). GIS-based flood risk assessment using multi-criteria decision analysis of Shebelle River Basin in southern Somalia. SN Applied Sciences, 5(5), 134. https://doi.org/10.1007/s42452-023-05360-5">[Crossref]
Ozkan, S. P., & Tarhan, C. (2016). Detection of Flood Hazard in Urban Areas Using GIS: Izmir Case. Procedia Technology, 22, 373–381. https://doi.org/10.1016/j.protcy.2016.01.026">[Crossref]
Paudyal, G. N. (1996). An integrated GIS-numerical modelling system for advanced flood management. Proceeding of the International Conference on Water Resources and Environment Research: Towards the 21st Century, Kyoto University, Japan, 555–562.
Pradhan, B., Shafiee, M., & Pirasteh, S. (2009). Maximum flood prone area mapping using RADARSAT images and GIS: Kelantan river basin. International Journal of Geoinformatics, 5(2).
Purwanto, A., Andrasmoro, D., Eviliyanto, E., Rustam, R., Ibrahim, M. H., & Rohman, A. (2023). Validating the GIS-based Flood Susceptibility Model Using Synthetic Aperture Radar (SAR) Data in Sengah Temila Watershed, Landak Regency, Indonesia. Forum Geografi, 36(2), 185–201. https://doi.org/10.23917/forgeo.v36i2.16368">[Crossref]
Purwitaningsih, S., Pamungkas, A., Setyasa, P. T., Pamungkas, R. P., Alfian, A. R., & Irawan, S. A. R. (2020). Flood-reduction scenario based on land use in Kedurus river basin using SWAT hydrology model. Geoplanning: Journal of Geomatics and Planning, 7(2), 87–94. https://doi.org/10.14710/geoplanning.7.2.87-94">[Crossref]
Rana, S. M. S., Habib, S. A., Sharifee, M. N. H., Sultana, N., & Rahman, S. H. (2024). Flood risk mapping of the flood-prone Rangpur division of Bangladesh using remote sensing and multi-criteria analysis. Natural Hazards Research, 4(1), 20–31. https://doi.org/10.1016/j.nhres.2023.09.012">[Crossref]
Rezvani, S. M., Falcão, M. J., Komljenovic, D., & de Almeida, N. M. (2023). A Systematic Literature Review on Urban Resilience Enabled with Asset and Disaster Risk Management Approaches and GIS-Based Decision Support Tools. Applied Sciences, 13(4), 2223. https://doi.org/10.3390/app13042223">[Crossref]
Rincón, D., Khan, U. T., & Armenakis, C. (2018). Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences, 8(8), 275. https://doi.org/10.3390/geosciences8080275">[Crossref]
Samarasinghea, S., Nandalalb, H. K., Weliwitiyac, D. P., Fowzed, J. S. M., Hazarikad, M. K., & Samarakoond, L. (2010). Application of remote sensing and GIS for flood risk analysis: a case study at Kalu-Ganga River, Sri Lanka. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 38(8), 110–115.
Samphantharak, K. (2019). Natural Disaster and Economic Development in Southeast Asia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3388396">[Crossref]
Saputra, A., Sigit, A. A., Priyana, Y., Abror, A. M., Sari, A. N. L., & Nursetiyani, O. (2022). A Low-Cost Drone Mapping and Simple Participatory GIS to Support The Urban Flood Modelling. Geographia Technica, 17(2).
Sar, N., Chatterjee, S., & Das Adhikari, M. (2015). Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Modeling Earth Systems and Environment, 1(4), 31. https://doi.org/10.1007/s40808-015-0039-9">[Crossref]
Sarmah, T., Das, S., Narendr, A., & Aithal, B. H. (2020). Assessing human vulnerability to urban flood hazard using the analytic hierarchy process and geographic information system. International Journal of Disaster Risk Reduction, 50, 101659. https://doi.org/10.1016/j.ijdrr.2020.101659">[Crossref]
Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2019). Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environmental Earth Sciences, 78(2), 47. https://doi.org/10.1007/s12665-018-8003-4">[Crossref]
Sofia, G. (2020). Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward. Geomorphology, 355, 107055. https://doi.org/10.1016/j.geomorph.2020.107055">[Crossref]
Susetyo, C. (2008). Urban flood management in Surabaya City: anticipating changes in the Brantas River system.
Tehrany, M. S., Shabani, F., Neamah Jebur, M., Hong, H., Chen, W., & Xie, X. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538–1561. https://doi.org/10.1016/j.geomorph.2020.107055">[Crossref]
Tellman, B., Schank, C., Schwarz, B., Howe, P. D., & de Sherbinin, A. (2020). Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood Deaths and Property Damage across the USA. Sustainability, 12(15), 6006. https://doi.org/10.3390/su12156006">[Crossref]
UNISDR. (2004). Living with risk: A global review of disaster reduction initiatives.
Ward, S. M., Emrich, C. T., Ash, K., & Schumann, R. (2012). Research‐Based Decision Support in Hazard Mitigation: Louisiana Northshore Flood and Hurricane Protection. Risk, Hazards & Crisis in Public Policy, 3(3), 38–68. https://doi.org/10.1002/rhc3.11">[Crossref]
Xiong, L., Li, S., Tang, G., & Strobl, J. (2022). Geomorphometry and terrain analysis: data, methods, platforms and applications. Earth-Science Reviews, 233, 104191. https://doi.org/10.1016/j.earscirev.2022.104191">[Crossref]
Zein, M. (2010). A community-based approach to flood hazard and vulnerability assessment in flood prone areas; A case study in Kelurahan Sewu, Surakarta City-Indonesia. University of Twente.
Zhou, Q., Su, J., Arnbjerg-Nielsen, K., Ren, Y., Luo, J., Ye, Z., & Feng, J. (2021). A GIS-Based Hydrological Modeling Approach for Rapid Urban Flood Hazard Assessment. Water, 13(11), 1483. https://doi.org/10.3390/w13111483">[Crossref]
Last update:
Last update: 2025-01-06 18:45:13