skip to main content

Groundwater Nitrate Modeling in Tehran Metropolis Using Artificial Neural Network and Kriging Methods

*Fatemeh Nickbeen  -  Faculty of Environment, University of Tehran, Tehran, Iran, Iran, Islamic Republic of
Abdolrassoul Salmanmahiny  -  College of the Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Iran, Islamic Republic of

Citation Format:
Abstract

This study examined the relationship between groundwater quality and land use in Tehran. For this purpose, the possible relationship between the types of land uses and the concentration of nitrate in groundwater parameters was modelled using a Multi-Layer Perceptron (MLP) artificial neural network in geographic information system (GIS). The optimal network model was selected based on the mean root mean square error (RMSE) and correlation coefficient. Interpolation through Kriging was also performed to compare its results with those of the predicted model derived from an artificial neural network. The results showed that the neural network has a high capability for predicting and modelling groundwater nitrate concentration compared to the Kriging method. The high accuracy (RMSE: 0.003) of the neural network makes it a useful tool in relevant management issues. Our results of network sensitivity analysis were similar to scientific findings regarding the factors influencing the formation of nitrate in groundwater. Model outputs in the form of maps, tables, and graphs allowed the study of the role of each variable and the extent of its impact on groundwater quality. Performing various simulations and modelling of groundwater pollution provides an effective benchmark towards optimizing the management, control, planning, and decision-making in urban areas and can lead to economic and environmental savings.

Fulltext View|Download
Keywords: GIS Modelling, Groundwater, Nitrate, MLP, Impact Assessment

Article Metrics:

  1. Bowers, J. S., Malhotra, G., Dujmović, M., Montero, M. L., Tsvetkov, C., Biscione, V., Puebla, G., Adolfi, F. G., Hummel, J., Heaton, R. F., Evans, B. D., Mitchell, J., & Blything, R. (2022). Deep Problems with Neural Network Models of Human Vision. In Behavioral and Brain Scienceshttps://doi.org/10.31234/osf.io/5zf4s">[Crossref]

  2. Cameron, K. C., Di, H. J., & Moir, J. L. (2013). Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology, 162(2), 145–173. https://doi.org/10.1111/aab.12014">[Crossref]

  3. El Amri, A., M’nassri, S., Nasri, N., Nsir, H., & Majdoub, R. (2022). Nitrate concentration analysis and prediction in a shallow aquifer in central-eastern Tunisia using artificial neural network and time series modelling. Environmental Science and Pollution Research, 29(28), 43300–43318. https://doi.org/10.1007/s11356-021-18174-y">[Crossref]

  4. ESRI. (2021). Specify a coordinate system. ESRI. https://pro.arcgis.com/en/pro-app/latest/help/mapping/properties/specify-a-coordinate-system.htm

  5. Gardner, S. G., Levison, J., Parker, B. L., & Martin, R. C. (2020). Groundwater nitrate in three distinct hydrogeologic and land-use settings in southwestern Ontario, Canada. Hydrogeology Journal, 28(5), 1891–1908. https://doi.org/10.1007/s10040-020-02156-4">[Crossref]

  6. Ghahremanzadeh, H., Noori, R., Baghvand, A., & Nasrabadi, T. (2018). Evaluating the main sources of groundwater pollution in the southern Tehran aquifer using principal component factor analysis. Environmental Geochemistry and Health, 40(4), 1317–1328. https://doi.org/10.1007/s10653-017-0058-8">[Crossref]

  7. Gutiérrez, M., Biagioni, R. N., Alarcón-Herrera, M. T., & Rivas-Lucero, B. A. (2018). An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Science of The Total Environment, 624, 1513–1522. https://doi.org/10.1016/j.scitotenv.2017.12.252">[Crossref]

  8. Karimi, L., Motagh, M., & Entezam, I. (2019). Modeling groundwater level fluctuations in Tehran aquifer: Results from a 3D unconfined aquifer model. Groundwater for Sustainable Development, 8, 439–449. https://doi.org/10.1016/j.gsd.2019.01.003">[Crossref]

  9. Kim, S. H., Kim, H.-R., Yu, S., Kang, H.-J., Hyun, I.-H., Song, Y.-C., Kim, H., & Yun, S.-T. (2021). Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: With emphasis on legacy effects on water management. Water Research, 191, 116814. https://doi.org/10.1016/j.watres.2021.116814">[Crossref]

  10. Kumar, P., Gauba, H., Roy, P. P., & Dogra, D. P. (2017). Coupled HMM-based multi-sensor data fusion for sign language recognition. Pattern Recognition Letters, 86, 1–8. https://doi.org/10.1016/j.patrec.2016.12.004">[Crossref]

  11. Mihi, A., & Benaradj, A. (2022). Assessing and mapping wind erosion-prone areas in Northeastern Algeria using additive linear model, fuzzy logic, multicriteria, GIS, and remote sensing. Environmental Earth Sciences, 81(2), 47. https://doi.org/10.1007/s12665-021-10154-2">[Crossref]

  12. Pandey, H. K., Tiwari, V., Kumar, S., Yadav, A., & Srivastava, S. K. (2020). Groundwater quality assessment of Allahabad smart city using GIS and water quality index. Sustainable Water Resources Management, 6(2), 28. https://doi.org/10.1007/s40899-020-00375-x">[Crossref]

  13. Ransom, K. M., Nolan, B. T., Stackelberg, P. E., Belitz, K., & Fram, M. S. (2022). Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. Science of The Total Environment, 807, 151065. https://doi.org/10.1016/j.scitotenv.2021.151065">[Crossref]

  14. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0">[Crossref]

  15. Secci, R., Laura Foddis, M., Mazzella, A., Montisci, A., & Uras, G. (2015). Artificial Neural Networks and Kriging method for slope geomechanical characterization. Engineering Geology for Society and Territory-Volume 2: Landslide Processes, 1357–1361.

  16. Sen, A., Gümüsay, M. Ü., Kavas, A., & Bulucu, U. (2008). Programming an Artificial neural network tool for spatial interpolation in GIS-A case study for indoor radio wave propagation of WLAN. Sensors, 8(9), 5996–6014.

  17. Sharma, V., Negi, S. ., Rudra, R. ., & Yang, S. (2003). Neural networks for predicting nitrate-nitrogen in drainage water. Agricultural Water Management, 63(3), 169–183. https://doi.org/10.1016/S0378-3774(03)00159-8">[Crossref]

  18. Shinde, P. P., & Shah, S. (2018). A review of machine learning and deep learning applications. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), 1–6.

  19. Şişman, E., & Kizilöz, B. (2020). Artificial neural network system analysis and Kriging methodology for estimation of non-revenue water ratio. Water Supply, 20(5), 1871–1883. https://doi.org/10.2166/ws.2020.095">[Crossref]

  20.  Smith, D. N. I., Ortega-Camacho, D., Acosta-González, G., Leal-Bautista, R. M., Fox, W. E., & Cejudo, E. (2020). A multi-approach assessment of land use effects on groundwater quality in a karstic aquifer. Heliyon, 6(5), e03970. https://doi.org/10.1016/j.heliyon.2020.e03970">[Crossref]

  21. Taud, H., & Mas, J. F. (2018). Multilayer Perceptron (MLP). In Geomatic approaches for modeling land change scenarios (pp. 451–455). Springer. https://doi.org/10.1007/978-3-319-60801-3_27">[Crossref]

  22. Tavassoli, A., Waghei, Y., & Nazemi, A. (2022). Comparison of Kriging and artificial neural network models for the prediction of spatial data. Journal of Statistical Computation and Simulation, 92(2), 352–369. https://doi.org/10.1080/00949655.2021.1961140">[Crossref]

  23. Torres-Martínez, J. A., Mora, A., Mahlknecht, J., Daesslé, L. W., Cervantes-Avilés, P. A., & Ledesma-Ruiz, R. (2021). Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model. Environmental Pollution, 269, 115445. https://doi.org/10.1016/j.envpol.2020.115445">[Crossref]

  24. Wagh, V., Panaskar, D., Muley, A., Mukate, S., & Gaikwad, S. (2018). Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India. Groundwater for Sustainable Development, 7, 436–445. https://doi.org/10.1016/j.gsd.2017.12.012">[Crossref]

  25. Wang, L., He, Z., & Li, J. (2020). Assessing the land use type and environment factors affecting groundwater nitrogen in an arid oasis in northwestern China. Environmental Science and Pollution Research, 27(32), 40061–40074. https://doi.org/10.1007/s11356-020-09745-6">[Crossref]

  26. Ward, M., Jones, R., Brender, J., De Kok, T., Weyer, P., Nolan, B., Villanueva, C., & Van Breda, S. (2018). Drinking Water Nitrate and Human Health: An Updated Review. International Journal of Environmental Research and Public Health, 15(7), 1557. https://doi.org/10.3390/ijerph15071557">[Crossref]

  27. Wu, J., Bian, J., Wan, H., Ma, Y., & Sun, X. (2021). Health risk assessment of groundwater nitrogen pollution in Songnen Plain. Ecotoxicology and Environmental Safety, 207, 111245. https://doi.org/10.1016/j.ecoenv.2020.111245

  28. Yu, G., Wang, J., Liu, L., Li, Y., Zhang, Y., & Wang, S. (2020). The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai, China. BMC Public Health, 20(1), 437. https://doi.org/10.1186/s12889-020-08583-y">[Crossref]

  29. Zhai, Y., Zhao, X., Teng, Y., Li, X., Zhang, J., Wu, J., & Zuo, R. (2017). Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicology and Environmental Safety, 137, 130–142. https://doi.org/10.1016/j.ecoenv.2016.11.010">[Crossref]

  30. Zhang, Q., Qian, H., Xu, P., Li, W., Feng, W., & Liu, R. (2021). Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou Irrigation District. Journal of Cleaner Production, 298, 126783. https://doi.org/10.1016/j.jclepro.2021.126783">[Crossref]


Last update:

No citation recorded.

Last update: 2024-12-04 11:39:31

No citation recorded.