skip to main content

Potensi Ekonomi Pirolisis Sampah Plastik untuk Pengelolaan Berkelanjutan: Studi Kasus Plastik Pembungkus Paket

1Program Studi Teknik Lingkungan, Fakultas Perencanaan Infrastruktur, Universitas Pertamina, Indonesia, Indonesia

2Jurusan Teknik Sipil, Fakultas Teknik, Universitas Sebelas Maret, Indonesia, Indonesia

3Jurusan Ilmu Lingkungan, Fakultas MIPA, Universitas Sebelas Maret, Indonesia, Indonesia

Received: 10 Oct 2022; Revised: 2 Jan 2024; Accepted: 21 Feb 2024; Available online: 28 May 2024; Published: 7 Jun 2024.
Editor(s): Budi Warsito

Citation Format:
Abstract

Ketidakpedulian terhadap pencemaran sampah plastik telah mendorong eksplorasi teknologi pengelolaan limbah inovatif, seperti pirolisis plastik. Penelitian ini menyajikan analisis ekonomi dari pirolisis sampah plastik, dengan fokus pada plastik pembungkus paket, sebagai solusi potensial untuk pengelolaan limbah berkelanjutan. Melalui evaluasi komprehensif terhadap biaya, pendapatan, dan manfaat, penelitian ini menilai kelayakan ekonomi teknologi pirolisis. Hasil penelitian menunjukkan bahwa nilai ekonomi saat ini yang dihasilkan dari pengolahan sampah plastik dengan pirolisis masih di bawah batas keuntungan yang signifikan. Kesimpulan ini didasarkan pada rasio Benefit Cost Ratio (BCR) yang kurang dari 1. Penelitian ini menegaskan pentingnya mempertimbangkan efisiensi operasional, kapasitas reaktor, dan bahan baku untuk meningkatkan prospek ekonomi pirolisis sampah plastik. Penelitian ini berkontribusi pada wacana lebih luas mengenai pengelolaan sampah plastik dan memberikan wawasan bagi pengembangan lebih lanjut teknologi pirolisis dalam mencapai tujuan pengelolaan limbah berkelanjutan.

Fulltext View|Download
Keywords: sampah plastik; pirolisis; analisis ekonomi; pengelolaan berkelanjutan; plastik pembungkus paket; Benefit Cost Ratio (BCR); teknologi pengelolaan limbah

Article Metrics:

  1. BAPPEDA Kota Surakarta. (2020). Peta Kota Surakarta. https://www.google.com/url?sa=i&url=https%3A%2F%2Fintip.surakarta.go.id%2Falbum-peta&psig=AOvVaw034Me7HAc12--Ia2itvq6r&ust=1692149572254000&source=images&cd=vfe&opi=89978449&ved=0CBIQjhxqFwoTCJDxg-rC3YADFQAAAAAdAAAAABAJ
  2. Bening, C. R., Pruess, J. T., & Blum, N. U. (2021). Towards a circular plastics economy: Interacting barriers and contested solutions for flexible packaging recycling. Journal of Cleaner Production, 302, 126966. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126966
  3. Bu, Q., Chen, K., Xie, W., Liu, Y., Cao, M., Kong, X., Chu, Q., & Mao, H. (2019). Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene. Bioresource Technology, 291, 121860. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121860
  4. Budiprasojo, A., & Pratama, A. (2016). NILAI KALOR BAHAN BAKAR PLASTIK POLYPROPILENE (BBPP) HASIL PYROLISIS DENGAN CAMPURAN PREMIUM DAN OCTANE BOOSTER. Jurnal Ilmiah Inovasi, 16. https://doi.org/10.25047/jii.v16i2.296
  5. Dewi, R. R., Sintiadi, F., & Durahman, E. U. (2021). Register of Online Transactions in the Field of Beauty on Social Media Instagram. Teknosastik, 19(2), 74–80. https://doi.org/10.33365/ts.v19i2.700
  6. Escursell, S., Llorach-Massana, P., & Roncero, M. B. (2021). Sustainability in e-commerce packaging: A review. Journal of Cleaner Production, 280, 124314. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.124314
  7. Fan, Y., Lu, D., Wang, J., & Kawamoto, H. (2022). Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design. Energy, 239, 122234. https://doi.org/https://doi.org/10.1016/j.energy.2021.122234
  8. Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 75, 603–608. https://doi.org/10.1016/J.ENCONMAN.2013.08.008
  9. Fu, J., Wu, X., Liu, J., Evrendilek, F., Chen, T., Xie, W., Xu, W., & He, Y. (2023). Co-circularity of spent coffee grounds and polyethylene via co-pyrolysis: Characteristics, kinetics, and products. Fuel, 337, 127061. https://doi.org/https://doi.org/10.1016/j.fuel.2022.127061
  10. Gala, A., Guerrero, M., & Serra, J. M. (2020). Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies. Waste Management, 111, 22–33. https://doi.org/https://doi.org/10.1016/j.wasman.2020.05.019
  11. Ghodrat, M., Abascall Alonso, J., Hagare, D., Yang, R., & Samali, B. (2019). Economic feasibility of energy recovery from waste plastic using pyrolysis technology: an Australian perspective. International Journal of Environmental Science and Technology, 16(7), 3721–3734. https://doi.org/10.1007/s13762-019-02293-8
  12. Islam, M. R., Joardder, M. U. H., Hasan, S. M., Takai, K., & Haniu, H. (2011). Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology. Waste Management, 31(9), 2142–2149. https://doi.org/https://doi.org/10.1016/j.wasman.2011.04.017
  13. Jamaluddin, M., Maulana, E., & Djatmiko, E. (2022). Perancangan Burner untuk Reaktor Pirolisis Kapasitas 15 kg dengan Bahan Bakar Refuse Derived Fuel (RDF) dan Gas. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, 4, 1–12. https://doi.org/10.35814/asiimetrik.v4i1.2346
  14. Jambeck, J., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). the Ocean : the Ocean : Marine Pollution, 347(6223), 768-. https://science.sciencemag.org/CONTENT/347/6223/768.abstract
  15. Jangid, C. J., Miller, K. M., & Seay, J. R. (2022). Analysis of Plastic-Derived Fuel Oil Produced from High- and Low-Density Polyethylene. In Recycling (Vol. 7, Issue 3). https://doi.org/10.3390/recycling7030029
  16. Kementerian Energi dan Sumber Daya Mineral Republik Indonesia. (2022). Keputusan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 37.K/HK.02/MEM.M/2022 tentang Jenis Bahan Bakar Minyak Khusus Penugasan
  17. Mugilarasan, M., Karthik, R., Purvaja, R., Robin, R. S., Subbareddy, B., Hariharan, G., Rohan, S., Jinoj, T. P. S., Anandavelu, I., Pugalenthi, P., & Ramesh, R. (2021). Spatiotemporal variations in anthropogenic marine litter pollution along the northeast beaches of India. Environmental Pollution, 280, 116954. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116954
  18. Peng, Y., Wu, P., Schartup, A. T., & Zhang, Y. (2021). Plastic waste release caused by COVID-19 and its fate in the global ocean. Proceedings of the National Academy of Sciences, 118(47), e2111530118. https://doi.org/10.1073/pnas.2111530118
  19. PT Pertamina. (2021). Daftar Harga BBK TMT 01 April 2021
  20. Raab, K., Wagner, R., Ertz, M., & Salem, M. (2023). When marketing discourages consumption: demarketing of single-use plastics for city tourism in Ottawa, Canada. Journal of Ecotourism, 22(3), 375–405. https://doi.org/10.1080/14724049.2022.2028794
  21. Rahmayetty. (2021). Pengembangan Pengolahan Industri Sampah Plastik Terpadu Berbasis Circular Economy di Kota Cilegon-Banten. Universitas Sultan Ageng Tirtayasa
  22. Ristianingsih, Y., Ulfa, A., & Syafitri K.S, R. (2015). Pengaruh Suhu Dan Konsentrasi Perekat Terhadap Karakteristik Briket Bioarang Berbahan Baku Tandan Kosong Kelapa Sawit Dengan Proses Pirolisis. Konversi, 4(2), 16. https://doi.org/10.20527/k.v4i2.266
  23. Sari, Mega Muitiara, Septiariva, I. Y., Fauziah, E. N., Ummatin, K. K., Arifianti, Q. A. M. O., Faria, N., Lim, J.-W., & Suryawan, I. W. K. (2023). Prediction of recovery energy from ultimate analysis of waste generation in Depok City, Indonesia. International Journal of Electrical and Computer Engineering (IJECE), 13(1), 1. https://doi.org/10.11591/ijece.v13i1.pp1-8
  24. Sari, Mega Mutiara, Andarani, P., Notodarmojo, S., Harryes, R. K., Nguyen, M. N., Yokota, K., & Inoue, T. (2022). Plastic pollution in the surface water in Jakarta, Indonesia. Marine Pollution Bulletin, 182, 114023. https://doi.org/https://doi.org/10.1016/j.marpolbul.2022.114023
  25. Sari, Mega Mutiara, Inoue, T., Rofiah, R., Septiariva, I. Y., Prayogo, W., Suryawan, I. W. K., & Arifianingsih, N. N. (2023). Transforming Bubble Wrap and Packaging Plastic Waste into Valuable Fuel Resources. Journal of Ecological Engineering, 24(8), 260–270. https://doi.org/10.12911/22998993/166554
  26. Sianipar, I. M. J., Suryawan, I. W. K., & Tarigan, S. R. (2022). The Challenges and Future of Marine Debris Policy in Indonesia and Taiwan Case Studies. Journal of Sustainable Infrastructure, 1(2 SE-Articles), 56–62. file://jsi.universitaspertamina.ac.id/index.php/jsi/article/view/9
  27. Sirait, R., Maulana, E., & Mahardika, D. (2020). Analisis Keseimbangan Energi pada Reaktor Pirolisis Kapasitas 75 Kg/Jam. Seminar Nasional Penelitian LPPM UMJ, 1–8. website: http://jurnal.umj.ac.id/index.php/semnaslit
  28. Suryawan, I. W. K., & Lee, C.-H. (2023). Citizens’ willingness to pay for adaptive municipal solid waste management services in Jakarta, Indonesia. Sustainable Cities and Society, 97. https://doi.org/https://doi.org/10.1016/j.scs.2023.104765
  29. Suryawan, I. W. K., Septiariva, I. Y., Fauziah, E. N., Ramadan, B. S., Qonitan, F. D., Zahra, N. L., Sarwono, A., Sari, M. M., Ummatin, K. K., & Wei, L. J. (2022). Municipal Solid Waste to Energy : Palletization of Paper and Garden Waste into Refuse Derived Fuel. Journal of Ecological Engineering, 23(4), 64–74
  30. Ulhasanah, N., & Goto, N. (2018). Assessment of citizens’ environmental behavior toward municipal solid waste management for a better and appropriate system in Indonesia: a case study of Padang City. Journal of Material Cycles and Waste Management, 20(2), 1257–1272. https://doi.org/10.1007/s10163-017-0691-4
  31. Zahra, N. L., Septiariva, I. Y., Sarwono, A., Qonitan, F. D., Sari, M. M., Gaina, P. C., Ummatin, K. K., Arifianti, Q. A. M. O., Faria, N., Lim, J.-W., Suhardono, S., & Suryawan, I. W. K. (2022). Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF). International Journal of Renewable Energy Development, 11(2), 523–532. https://doi.org/10.14710/ijred.2022.44328
  32. Zhao, Y., Fang, Y., Jin, Y., Huang, J., Bao, S., Fu, T., He, Z., Wang, F., & Zhao, H. (2014). Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: A pilot-scale comparison with water hyacinth. Bioresource Technology, 163, 82–91. https://doi.org/https://doi.org/10.1016/j.biortech.2014.04.018

Last update:

No citation recorded.

Last update: 2024-06-28 15:51:00

No citation recorded.