skip to main content

Pemanfaatan Penginderaan Jauh untuk Monitoring Dinamika Spasiotemporal Kesehatan Ekosistem Mangrove di Segara Anakan, Cilacap, Jawa Tengah

Fakultas Geografi Universitas Muhammadiyah Surakarta, Indonesia

Received: 4 Jul 2024; Revised: 8 Oct 2024; Accepted: 4 Jul 2025; Available online: 25 Jul 2025; Published: 31 Jul 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract
Mangrove Segara Anakan merupakan salah satu ekosistem mangrove terluas di Pulau Jawa yang memiliki manfaat secara ekologi dan ekonomi. Pemanfaaatan ekosistem mangrove mendorong meningkatnya aktifitas manusia yang menyebabkan terjadinya penurunan luas ekosistem mangrove. Adanya aktivitas manusia dan perubahan lingkungan alami dapat menyebabkan degradasi yang pada akhirnya akan mempengaruhi kondisi kesehatan ekosistem mangrove. Tujuan dari penelitian ini yakni memetakan perubahan sebaran keberadaan dan kesehatan ekosistem mangrove di Segara Anakan, Kabupaten Cilacap pada tahun 2018 dan 2023. Sebaran ekosistem mangrove dimodelkan dengan metode klasifikasi Support Vector Machine (SVM). Uji akurasi dengan metode confussion matrix dilakukan pada hasil model SVM. Kesehatan ekosistem mangrove didekati dengan metode Mangrove Health Index (MHI) menggunakan empat indeks vegetasi yakni NBR, GCI, SIPI, dan ARVI. Hasil penelitian menunjukkan luasan ekosistem mangrove mengalami penurunan 883,28 Ha pada rentang tahun 2018-2023. Penurunan disebabkan karena adanya sedimentasi sungai dan perubahan lahan mangrove menjadi tambak. Kondisi kesehatan ekosistem mangrove tahun 2018 dan 2023 didominasi oleh kondisi kesehatan hutan mangrove sedang  dengan luas 6.765,52 Ha pada tahun 2018 dan 5.058,36 Ha tahun 2023. Perubahan kesehatan ekosistem mangrove menjadi sangat baik banyak terjadi pada wilayah dekat Kota Cilacap dimana terdapat aktivitas konservasi dan rehabilitasi yang dilakukan oleh komunitas bersinergi dengan perusahaan dan pemerintah setempat.
Fulltext View|Download
Keywords: Support Vector Machine; Mangrove Health Index; Sentinel 2A; Segara Anakan; Sistem Informasi Geografis
Funding: Majelis Diktilitbang PP Muhammadiyah under contract 0258.010/I.3/D/2024

Article Metrics:

  1. Adinegoro, R., Putra, I. N. N., & Putra, I. G. (2022). Pemetaan Perubahan Luasan Mangrove Menggunakan Citra Sentinel-2A Pasca Kematian Mangrove di Denpasar-Bali. Journal of Marine and Aquatic Sciences, 8(1), 66–77
  2. Chavez, P. S. (1996). Image-Based Atmospheric Corrections - Revisited and Improved. Photogrammetric Engineering and Remote Sensing, 62, 1025–1036. Retrieved from https://api.semanticscholar.org/CorpusID:3119191
  3. Dewi, R., Zainuri, M., Anggoro, S., & Winanto, T. (2016). Analisis Perubahan Lahan Kawasan Laguna Segara Anakan Selama Periode Waktu (1978-2016) Menggunakan Satelit Landsat Multitemporal. Omni Akuatik, Journal of Fisheries and Marine Research, 12(3), 144–150. Retrieved from https://ojs.omniakuatika.net/index.php/joa/article/view/209
  4. Dwininta, A. C., & Hartono. (2017). Perubahan Hutan Mangrove Tahun 2000-2015 Di Segara Anakan Kab. Cilacap Jawa Tengah Menggunakan Citra Landsat 7 Etm+ Dan 8 OLI. Jurnal Bumi Indonesia, 6(1), 1–10
  5. Everitt, J. H., & Judd, F. W. (1989). Using Remote Sensing Techniques to Distinguish and Monitor Black Mangrove (Avicennia Germinans). Journal of Coastal Research, 5(4), 737–745. Retrieved from http://www.jstor.org/stable/4297605
  6. FAO. (2007). The World’s Mangrove 1980-2005. Rome: Food and Agriculture Organization of United Nations
  7. Flores De Santiago, F., Kovacs, J. M., & Lafrance, P. (2013). An object-oriented classification method for mapping mangroves in Guinea, West Africa, using multipolarized ALOS PALSAR L-band data. International Journal of Remote Sensing, 34(2), 563–586. https://doi.org/10.1080/01431161.2012.715773
  8. Hanggara, B. B., Murdiyarso, D., Rs, Y., Widha, Y. L., Panjaitan, G. Y., & Lubis, A. A. (2021). Estuarine , Coastal and Shelf Science Effects of diverse mangrove management practices on forest structure , carbon dynamics and sedimentation in North Sumatra , Indonesia. Estuarine, Coastal and Shelf Science, 259, 107467. https://doi.org/10.1016/j.ecss.2021.107467
  9. Hidayat, A., Budiastuti, M. T. S., Trihatmoko, E., Danardono, D., & Ainurrohmah, D. (2024). The potential of community-based ecotourism development with an ecosystem service approach: a case study of Kaliwlingi Village, Brebes, Indonesia. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04380-w
  10. Huber, L. C., Sainge, M. N., Feka, Z. N., Kamara, R. A., Kamara, A., Sullivan, M., & Cuni-Sanchez, A. (2023). Human-driven degradation impacts on mangroves in southern Sierra Leone. Trees, Forests and People, 14, 100445. https://doi.org/https://doi.org/10.1016/j.tfp.2023.100445
  11. Ishtiaque, A., Shrestha, M., & Chhetri, N. (2017). Rapid Urban Growth in the Kathmandu Valley, Nepal: Monitoring Land Use Land Cover Dynamics of a Himalayan City with Landsat Imageries. Environments, Vol. 4. https://doi.org/10.3390/environments4040072
  12. Ismail, Sulistiono, Hariyadi, S., & Madduppa, H. (2019). Correlation Between Mangrove Degradation in Segara Anakan and Production of Crab (Scylla sp.) in Cilacap Regency, Central Java Province. Jurnal Ilmu Pertanian Indonesia, 24(3), 179–187. https://doi.org/10.18343/jipi.24.3.179
  13. Jia, M., Wang, Z., Mao, D., Ren, C., Wang, C., & Wang, Y. (2021). Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 255, 112285. https://doi.org/https://doi.org/10.1016/j.rse.2021.112285
  14. Kovacs, J M, Lu, X. X., Flores-Verdugo, F., Zhang, C., Flores de Santiago, F., & Jiao, X. (2013). Applications of ALOS PALSAR for monitoring biophysical parameters of a degraded black mangrove (Avicennia germinans) forest. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 102–111. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2013.05.004
  15. Kovacs, John M., Liu, Y., Zhang, C., Flores-Verdugo, F., & de Santiago, F. F. (2011). A field based statistical approach for validating a remotely sensed mangrove forest classification scheme. Wetlands Ecology and Management, 19(5), 409–421. https://doi.org/10.1007/s11273-011-9225-3
  16. Kristianingsih, L., Wijaya, A. P., & Sukmono, A. (2016). Analisis Pengaruh Koreksi Atmosfer Terhadap Estimasi Kandungan Klorofil-A Menggunakan Citra Landsat 8. Jurnal Geodesi Undip, 5(4), 56–62
  17. Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. In Remote Sensing (Vol. 3). https://doi.org/10.3390/rs3050878
  18. Kurniawansyah, A., Susiloningtyas, D., Dwi, M., & Manessa, M. (2023). Suitability of Mangrove Tourism Areas in Cilamaya Wetan District , Karawang Regency. (2015), 10–23. https://doi.org/10.23917/forgeo.v37i1.19852
  19. LAPAN. (2015). Pedoman Pengolahan Data Penginderaan Jauh Landsat 8 Untuk Mangrove. Jakarta: LAPAN
  20. Listyaningsih, D. D., Yulianda, F., & Ardli, E. R. (2013). Kajian degradasi ekosistem mangrove terhadap populasi polymesoda erosa di segara anakan, cilacap. Forum Geografi, 27(1), 1–10
  21. Lorenzo, E. N., Jesus Jr, B. D., & Jara, R. S. (1979). Assessment of mangrove forest deterioration in Zamboanga Peninsula, Philippines using Landsat MSS data. Proceedings of the Thirteenth International Symposium on Remote Sensing of Environment, 23–27
  22. Majid, I., Al Muhdar, M. H. I., Rohman, F., & Syamsuri, I. (2016). Konservasi Hutan Mangrove Di Pesisir Pantai Kota Ternate Terintegrasi Dengan Kurikulum Sekolah. 4(2)
  23. Oliveira, T. S., Xavier, D. de A., Santos, L. D., Passos, T. U., Sanders, C. J., França, E. J., … Barcellos, R. L. (2021). Reconstructing the history of environmental impact in a tropical mangrove ecosystem: A case study from the Suape port-industrial complex, Brazil. Regional Studies in Marine Science, 44, 101747. https://doi.org/https://doi.org/10.1016/j.rsma.2021.101747
  24. Onrizal, O. (2010). Permasalahan Mangrove Pantai Timur Sumatera Utara Periode 1977-2006. Jurnal Biologi Indonesia, 6(2), 163–172
  25. Perdana, P., Wiguna, K., Wayan, N., Sutari, S., Febriarta, E., & Permata-, A. L. (2022). Spatial Analysis of Mangrove Distribution Using Landsat 8 Oli in Badung Regency and Denpasar City , Bali Province , Indonesia. 21–29. https://doi.org/10.23917/forgeo.v36i1.14711
  26. Prabakaran, C., Singh, C. P., & Panigrahy, S. (2014). Assessment of the health status of Indian mangrove ecosystems using multi temporal remote sensing data. Tropical Ecology, (2), 245–253
  27. Pratama, W. L., & Isdianto, A. (2017). Pemetaan kerapatan hutan mangrove di segara anakan, Cilacap, Jawa Tengah menggunakan citra landsat 8 di Lembaga Penerbangan dan Antariksa Nasional (LAPAN), Jakarta. Jurnal J. Floratek, 12(1), 57–61
  28. Priyono, K. D., Saifuddin, A., Nugroho, F. S., & Jumadi, J. (2022). IDENTIFICATION OF MANGROVE CHANGES IN THE MAHAKAM DELTA IN 2007-2017 USING ALOS / PALSAR AND LANDSAT. International Journal of GEOMATE, 23(96), 77–84
  29. Rahman, A. N., & Herumurti, S. (2014). Studi Perbandingan Klasifikasi Multispektral Maximum Likelihood dan Support Vector Machine untuk Pemetaan Penutup Lahan. Jurnal Bumi Indonesia, 3(4), 1–7
  30. Song, C., White, B. L., & Heumann, B. W. (2011). Hyperspectral remote sensing of salinity stress on red (Rhizophora mangle) and white (Laguncularia racemosa) mangroves on Galapagos Islands. Remote Sensing Letters, 2(3), 221–230. https://doi.org/10.1080/01431161.2010.514305
  31. Su, J., Friess, D. A., & Gasparatos, A. (2021). A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nature Communications, 12(1), 5050. https://doi.org/10.1038/s41467-021-25349-1
  32. Sugiana, I. P., Andiani, A. A. E., Pradnyandari Dewi, I. G. A. I., Astawa Karang, I. W. G., As-Syakur, A. R., & Dharmawan, I. W. E. (2022). Spatial distribution of mangrove health index on three genera dominated zones in Benoa Bay, Bali, Indonesia. Biodiversitas, 23(7), 3407–3418. https://doi.org/10.13057/biodiv/d230713
  33. Susanto, A., Khalifa, M. A., Munandar, E., Nurdin, H. S., Supadminingsih, F. N., Hasanah, A. N., … Alansar, T. (2022). Kondisi kesehatan ekosistem mangrove sebagai sumber potensial pengembangan ekonomi kreatif pesisir Selat Sunda. Leuit (Journal of Local Food Security), 3(1), 172–181
  34. Trégarot, E., Caillaud, A., Cornet, C. C., Taureau, F., Catry, T., Cragg, S. M., & Failler, P. (2021). Mangrove ecological services at the forefront of coastal change in the French overseas territories. Science of The Total Environment, 763, 143004. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143004
  35. Utami, F. P., Sukmono, A., & Prasetyo, Y. (2016). ANALISIS SPASIAL PERUBAHAN LUASAN MANGROVE AKIBAT PENGARUH LIMPASAN SEDIMENTASI TERSUSPENSI DENGAN METODE PENGINDERAAN JAUH (Studi Kasus : Segara Anakan Kabupaten Cilacap, Jawa Tengah). Jurnal Geodesi Undip, 5(1), 305–315. Retrieved from https://ejournal3.undip.ac.id/index.php/geodesi/article/view/10602
  36. Wang, Y.-S., & Gu, J.-D. (2021). Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. International Biodeterioration & Biodegradation, 162, 105248. https://doi.org/https://doi.org/10.1016/j.ibiod.2021.105248
  37. Wayan Eka Dharmawan, I. (2021). Mangrove health index distribution on the restored post-tsunami mangrove area in Biak Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 860(1), 12007. https://doi.org/10.1088/1755-1315/860/1/012007
  38. Wibowo, K., & Handayani, T. (2006). Pelestarian Hutan Mangrove Melalui Pendekatan Mina Hutan (Silvofishery). Jurnal Teknik Lingkungan, 7(3), 227–233
  39. Winarso, G., Rosid, M. S., Kamal, M., Asriningrum, W., Margules, C., & Supriatna, J. (2023). Comparison of Mangrove Index (MI) and Normalized Difference Vegetation Index (NDVI) for the detection of degraded mangroves in Alas Purwo Banyuwangi and Segara Anakan Cilacap, Indonesia. Ecological Engineering, 197, 107119. https://doi.org/https://doi.org/10.1016/j.ecoleng.2023.107119
  40. Xia, Q., Jia, M., He, T., Xing, X., & Zhu, L. (2021). Effect of tide level on submerged mangrove recognition index using multi-temporal remotely-sensed data. Ecological Indicators, 131(August 2020), 108169. https://doi.org/10.1016/j.ecolind.2021.108169

Last update:

No citation recorded.

Last update: 2025-08-10 04:30:43

No citation recorded.