skip to main content

Peluang Karbon Nanopori Moringa oleifera Mengurangi Residu Besi Efluen Fenton Air Limbah Organik Tinggi

Program Studi Analis Kimia Fakultas Teknik Universitas Setia Budi, Jl. Let. Jen. Sutoyo Surakarta, Indonesia

Received: 14 Jan 2025; Revised: 2 Jul 2025; Accepted: 19 Jul 2025; Available online: 25 Jul 2025; Published: 31 Jul 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Polutan organik konsentrasi tinggi dari limbah industri mendominasi pencemaran air permukaan, dapat menimbulkan ancaman signifikan terhadap ekosistem perairan dan kesehatan manusia. Polutan ini sulit mengalami biodegradasi, menyebabkan berkurangnya kualitas air dan mengganggu kehidupan biota air. Reagen Fenton sangat efektif mengurangi konsentrasi polutan organik tinggi hingga lebih dari 90%. Namun efluen proses fenton mengandung residu Fe sangat tinggi melebihi baku mutu, berakibat menimbulkan pencemaran air. Diperlukan upaya pengolahan lanjutan yang ramah lingkungan. Moringa oleifera mempunyai peluang besar untuk mengurangi residu Fe setelah pengolahan fenton. Proses ini menjanjikan keamanan bagi biota air. Penelitian ini bertujuan memberikan solusi ramah lingkungan dalam pengolahan limbah organik tinggi pada efluen fenton menggunakan Moringa oleifera Carbon (MOC) dan Moringa oleifera Carbon Activated (MOCA) untuk mengurangi residu Fe. Metode penelitian dilakukan secara deskriptif laboratoris., menggunakan sampel penelitian dari air limbah industri tahu. Pengolahan menggunakan reagen fenton (H2O2 0,3M dan FeSO4 0,8M). Efluen dari proses fenton ditambahkan serbuk MOC dan MOCA 100 mesh. Variabel bebas konsentrasi (mg/L) MOC dan MOCA: 100, 200, 300 dan 400. Selanjutnya diuji waktu kontak (menit) 15, 30, 45 dan 60 terhadap konsentrasi paling optimal mengurangi residu Fe. Sampel sebelum dan sesudah pengolahan diuji kadar Fe. Uji karakteristik partikel MOC dan MOCA menggunakan SEM-EDX, BET-BJH dan FTIR. Uji karakteristik kimia meliputi kadar air, kadar abu, protein, lemak, karbohidrat, daya serap terhadap iod menggunakan metode terstandar sesuai SNI. Hasil penelitian menunjukkan MOCA memiliki rerata diameter pori 4,1825 nm.  MOCA dosis 400 mg/L dengan waktu kontak 30 menit efektif mengurangi residu Fe efluen fenton sebesar 76,39%. MOCA nanopori berpeluang besar sebagai bioadsorben yang ramah lingkungan.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (2MB)    Indexing metadata
Keywords: Polutan organik; Fenton; Residu Fe; Moringa oleifera; bioadsorben

Article Metrics:

  1. Aji, P. B., Sunarto, W., Eko, D., & Susatyo, B. (2016). Indonesian Journal of Chemical Science. J. Chem. Sci, 5(2). http://journal.unnes.ac.id/sju/index.php/ijcs
  2. Andrio, D., Asmura, J., Yenie, E., & Putri, K. (2019). Enhancing BOD 5 /COD ratio co-substrate tofu wastewater and cow dung during ozone pretreatment. https://doi.org/10.1051/matecconf/20192760
  3. Anugraheni, N. W., & Isworo, S. (2021). The Study of Impact of Tofu Industrial Waste Treatment Plant on Value of Chemical Oxygen Demand Level in Residents Well of Central Lamper Village, Semarang-Indonesia. Annual Research & Review in Biology, 98–107. https://doi.org/10.9734/arrb/2021/v36i830415
  4. Bergna, D., Varila, T., Romar, H., & Lassi, U. (2022). Activated carbon from hydrolysis lignin: Effect of activation method on carbon properties. Biomass and Bioenergy, 159. https://doi.org/10.1016/j.biombioe.2022.106387
  5. Demarco, C. F., Quadro, M. S., Selau Carlos, F., Pieniz, S., Morselli, L. B. G. A., & Andreazza, R. (2023). Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives. In Sustainability (Switzerland) (Vol. 15, Issue 2). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/su15021411
  6. Fang, J., Liu, L., Yang, H., & Du, H. (2024). Applications of Fenton/Fenton-like photocatalytic degradation in g-C3N4 based composite materials. In Journal of Environmental Chemical Engineering (Vol. 12, Issue 6). Elsevier Ltd. https://doi.org/10.1016/j.jece.2024.114153
  7. Fauziah, N., Ain, M., & Dewati, R. (2022). The Effectiveness of Green Scallop Shell Chitosan as Coagulant in Treatment of Tofu Industrial Liquid Waste. CHEESA: Chemical Engineering Research Articles, 5(2), 49. https://doi.org/10.25273/cheesa.v5i2.13019.49-58
  8. Feng, D., Lü, J., Guo, S., & Li, J. (2021). Biochar enhanced the degradation of organic pollutants through a Fenton process using trace aqueous iron. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104677
  9. Hardyanti, N., Susanto, H., & Budihardjo, M. A. (2024). Removal of organic matter from tofu wastewater using a combination of adsorption, Fenton oxidation, and ultrafiltration membranes. Desalination and Water Treatment, 318. https://doi.org/10.1016/j.dwt.2024.100255
  10. Imelda, D., Khanza, A., & Wulandari, D. (2019). Pengaruh Ukuran Partikel Dan Suhu Terhadap Penyerapan Logam Tembaga (Cu) Dengan Arang Aktif Dari Kulit Pisang Kepok (Musa Paradisiaca Formatypica). Online
  11. Ismawati, R., Rahayu, R., Puspitarini, R., Muhlisin, A., & Tawang, A. (2022). Poly Aluminum Chloride (PAC) as Coagulant in Liquid Waste Treatment of Tofu. Walisongo Journal of Chemistry, 5(1), 53–58. https://doi.org/10.21580/wjc.v5i1.9417
  12. Kusumaningtyas, M. P. (2017). Analisis Struktur Nano Batu Apung Lombok Menggunakan Metode BET (BRUNAUER-EMMETT-TELLER) [Institut Teknologi Sepuluh Nopember]. https://repository.its.ac.id/3253/7/1112100035-Undergraduate-Theses.pdf
  13. Liu, H., Xu, T., Li, C., Liu, W., & Lichtfouse, E. (2021). High increase in biodegradability of coking wastewater enhanced by Mn ore tailings in Fenton/O3 combined processes. International Journal of Environmental Science and Technology, 18(1), 173–184. https://doi.org/10.1007/s13762-020-02816-8
  14. Muliyadi, M., & Safrudin, D. J. (2020). Pollutant Levels Comparison in Tofu Industrial and Domestic Wastewater in Ternate City. Jurnal Kesehatan Masyarakat, 15(3), 366–371. https://doi.org/10.15294/kemas.v15i3.20748
  15. Nenohai, J. A., Minata, Z. S., Ronggopuro, B., Sanjaya, E. H., & Utomo, Y. (2023). Penggunaan Karbon Aktif dari Biji Kelor dan Berbagai Biomassa Lainnya dalam Mengatasi Pencemaran Air : Analisis Review. Jurnal Ilmu Lingkungan, 21(1), 29–35. https://doi.org/10.14710/jil.21.1.29-35
  16. Olabanji, T. O., Ojo, O. M., Williams, C. G., & Adewuyi, A. S. (2021). Assessment of Moringa oleifera Seeds as a Natural Coagulant in Treating Low Turbid Water. FUOYE Journal of Engineering and Technology, 6(4). https://doi.org/10.46792/fuoyejet.v6i4.702
  17. Prajapati, C., Ankola, M., Upadhyay, T. K., Sharangi, A. B., Alabdallah, N. M., Al-Saeed, F. A., Muzammil, K., & Saeed, M. (2022). Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. In Horticulturae (Vol. 8, Issue 6). MDPI. https://doi.org/10.3390/horticulturae8060492
  18. Pujiastuti, P., Wibowo, Y. M., & Narimo. (2022). Moringa Seed Powder Biocoagulant (Moringa oleifera) for Improving Laboratory Wastewater Quality. Molekul, 17(3), 301–310. https://doi.org/10.20884/1.jm.2022.17.3.5461
  19. Ribeiro, J. P., & Nunes, M. I. (2021). Recent trends and developments in Fenton processes for industrial wastewater treatment – A critical review. In Environmental Research (Vol. 197). Academic Press Inc. https://doi.org/10.1016/j.envres.2021.110957
  20. Salmi Abdullah, N., Hazwan Hussin, M., Syima Sharifuddin, S., & Azroie Mohamed Yusoff, M. (2017). PREPARATION AND CHARACTERIZATION OF ACTIVATED CARBON FROM Moringa Oleifera SEED POD. In Special Issue Sci.Int.(Lahore) (Vol. 29, Issue 1)
  21. Santos, T. M., da Silva, J. V., da Silva, G. F., & Pontes, L. A. M. (2021). Development of a low-cost adsorbent obtained from moringa oleifera and functionalized with iron nanoparticles for removal of oil from produced water. Biointerface Research in Applied Chemistry, 11(5), 13214–13231. https://doi.org/10.33263/BRIAC115.1321413231
  22. Septriani, S., Prayogo, N. A., Sahri, A., & Brown, C. L. (2021). Efficiency of suspended solid removal from tofu production using Rotating Biological Contractor (RBC). E3S Web of Conferences, 322. https://doi.org/10.1051/e3sconf/202132201034
  23. Seroja, R., Effendi, H., & Hariyadi, S. (2018). Tofu wastewater treatment using vetiver grass (Vetiveria zizanioides) and zeliac. Applied Water Science, 8(1). https://doi.org/10.1007/s13201-018-0640-y
  24. Setyowati Rahayu, S., Prasetyo, T., Purwanto, P., & Budiyono, B. (2018). Biogas Productivity as Renewable Energy and Performance of Waste Water Treatment in Tofu Small Scale Industry using an AnSBR Reactor. MATEC Web of Conferences, 156. https://doi.org/10.1051/matecconf/201815603049
  25. Shah, A., Manning, G., Zakharova, J., Arjunan, A., Batool, M., & Hawkins, A. J. (2024). Particle size effect of Moringa oleifera Lam. seeds on the turbidity removal and antibacterial activity for drinking water treatment. Environmental Chemistry and Ecotoxicology, 6, 370–379. https://doi.org/10.1016/j.enceco.2024.07.008
  26. Shan, T. C., Matar, M. Al, Makky, E. A., & Ali, E. N. (2017). The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Applied Water Science, 7(3), 1369–1376. https://doi.org/10.1007/s13201-016-0499-8
  27. Soltani, F., Navidjouy, N., & Rahimnejad, M. (2022). A review on bio-electro-Fenton systems as environmentally friendly methods for degradation of environmental organic pollutants in wastewater. In RSC Advances (Vol. 12, Issue 9, pp. 5184–5213). Royal Society of Chemistry. https://doi.org/10.1039/d1ra08825d
  28. Sumiyati, S., Syafrudin, Nugraha, M. F. D., Hartini, S., Sudarno, Ramadan, B. S., & Budihardjo, M. A. (2023). An Overview of Wastewater from Traditional Tofu Industries in Sugihmanik Village, Grobogan Regency and its Appropriate Treatment Alternative. IOP Conference Series: Earth and Environmental Science, 1169(1). https://doi.org/10.1088/1755-1315/1169/1/012038
  29. Suresh Kumar, P., Korving, L., Keesman, K. J., van Loosdrecht, M. C. M., & Witkamp, G. J. (2019). Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chemical Engineering Journal, 358, 160–169. https://doi.org/10.1016/j.cej.2018.09.202
  30. Tamas Isna Nufussilma. (2017). TAMAS 2017_FENTON. Institut Teknologi Sepuluh Nopember
  31. Wang, C., Jiang, R., Yang, J., & Wang, P. (2022). Enhanced Heterogeneous Fenton Degradation of Organic Pollutants by CRC/Fe3O4 Catalyst at Neutral pH. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.892424
  32. Wijayanti, M. S., Agustina, T. E., Dahlan, M. H., & Teguh, D. (2023). Pengolahan Air Limbah Laboratorium Menggunakan AOPs Secara Terintegrasi. Jurnal Ilmu Lingkungan, 22(1), 142–149. https://doi.org/10.14710/jil.22.1.142-149
  33. Yu, Z. (2019). Research on absorbing performance of activated carbon. IOP Conference Series: Materials Science and Engineering, 563(2). https://doi.org/10.1088/1757-899X/563/2/022023
  34. Zhang, Y., Shaad, K., Vollmer, D., & Ma, C. (2021). Treatment of textile wastewater using advanced oxidation processes—a critical review. In Water (Switzerland) (Vol. 13, Issue 24). MDPI. https://doi.org/10.3390/w13243515

Last update:

No citation recorded.

Last update: 2025-08-10 08:23:04

No citation recorded.