Kadar seng dan kadar malondialdehyde pada penderita multi drug resistant tuberculosis dan tuberkulosis sensitif

DOI: https://doi.org/10.14710/jgi.7.1.8-14

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Published: 30-12-2018
Section: Articles
Fulltext PDF Tell your colleagues Email the author

Background: Zinc is the main constituent element of Superoxide Dismutase (SOD) which acts to protect cells from inflammation and the toxic effects of Reactive Oxygen Species (ROS). High ROS production induces fat peroxidation, and forms malondialdehyde (MDA) which causes oxidative stress.
Objectives: This study aimed to analyze the difference of zinc and malondialdehyde levels among Multi Drug Resistant Tuberculosis and sensitive Tuberculosis.
Methods: Crossectional study with 55 subjects consisted of 32 MDR-TB subjects and 23 subjects TB sensitive. Selection of subjects using consecutive sampling. Zinc and MDA serum was obtained from venous blood. Zinc and MDA concentration were assessed by quantitative colometric and Thiobarbituric Acid Reactive Substances (TBARS) respectively. Data were analized statistic by independent t-test and Mann Whitney test.
Results: Zinc level of MDR-TB and TB sensitive were 74.85 (64 - 97) μg/dl and 73.03 (63 - 97) μg/dl respectively, while MDA of MDR-TB and sensitive TB were 2.262±1.055 nmol/mL and 2.66±0.992 nmol/mL. There was no significantly different in zinc level between MDR-TB and sensitive TB (p=1.000). Furthermore, there was not significantly different of MDA level between MDR-TB and sensitive Tuberculosis (p=0,147).
Conclusion: There are no differences in zinc and MDA levels in patient between MDR-TB and sensitive TB.

Keywords

MDA; MDR-TB; TB-sensitif; zinc

  1. Suparno Suparno 
    Dinas Kesehatan Kabupaten Wakatobi Provinsi Sulawesi Tenggara, Indonesia
    Departemen Ilmu Gizi Fakultas Kedokteran
  2. Suhartono Suhartono 
    Departemen Keseharan Masyarakat, Fakultas Kesehatan Masyarakat, Universitas Diponegoro, Indonesia
  3. Muchlis Achsan Udji Sofro 
    Bagian Penyakit Dalam, Fakultas Kedokteran, Universitas Diponegoro / RSUP Dr. Kariadi, Indonesia
  4. Mohammad Sulchan 
    Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Indonesia
  5. Kusmiyati Tjahjono 
    Bagian Biokimia, Fakultas Kedokteran, Universitas Diponegoro, Indonesia
  1. Barman N, Ghosh D, Rahman Q, Mn U, Ahmed S, Paul D, et al. Assessment of Risk Factors of Multidrug Resistant Tuberculosis with Emphasis on Serum Zinc. Bangladesh Med J. 2014;43(1):3–8.
  2. Lodha R, Mukherjee A, Singh V, Singh S, Friis H, Faurholt-jepsen D, et al. Effect of Micronutrient Supplementation on Treatment Outcomes in Children with Intrathoracic Tuberculosis : a Randomized Controlled Trial. Am J Clin Nutr. 2014;100(7):1287–97.
  3. Widhyari SD. Peran dan Dampak Defisiensi Zinc (Zn). Wartazoa. 2012;22(3):141–8.
  4. Rodriguez-Morales AJ, Bolivar-Mejía A, Alarcón-Olave C, Calvo-Betancourt LS. Nutrition and Infection. Encycl Food Heal. 1st ed. 2016;(October 2015):98–103.
  5. Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Prim. 2016;2:1–21.
  6. World Health Organization. Global Tuberculosis Report. Genewa: WHO Press; 2015. 5-105 p.
  7. World Health Organization. Global Tuberculosis Report. Genewa: WHO Press; 2016. 5-122 p.
  8. Kementerian Kesehatan RI. Profil Kesehatan Indonesia. Jakarta; 2017. 160-167 p.
  9. Dinas Kesehatan Provinsi Jawa Tengah. Profil Kesehatan Provinsi Jawa Tengah. Semarang; 2015. 18-22 p.
  10. Kementerian Kesehatan RI. Pedoman Nasional Pengendalian Tuberkulosis. Jakarta; 2014. p. 1–148.
  11. Kementerian Kesehatan RI. Tuberkulosis, Temukan Obati Sampai Sembuh. Jakarta; 2016. 1-10 p.
  12. Amalia L, Masyarakat DG, Manusia FE. Pengaruh Suplemen Antioksidan Terhadap Kadar Malondialdehid Plasma Mahasiswa IPB. J Gizi dan Pangan. 2014;9(1):35–42.
  13. Spooner R, Yilmaz Ö. The Role of Reactive-Oxygen-Species in Microbial Persistence and Inflammation. Int J Mol Sci. 2011;12:334–52.
  14. Butler RE, Cihlarova V, Stewart GR. Effective Generation of Reactive Oxygen Species in the Mycobacterial Phagosome Requires K + Efflux From The Bacterium. Cell Microbiol. 2010;12(April):1186–93.
  15. Shin D, Yang C, Lee J, Lee SJ, Choi H, Lee H, et al. Mycobacterium Tuberculosis Lipoprotein-induced Association of TLR2 with Protein Kinase C ζ in Lipid Rafts Contributes to Reactive Oxygen Species-Dependent Inflammatory Signalling in Macrophages. Cell Microbiol. 2009;10(9):1893–905.
  16. Wati YE, Muktiati NS, Astuti T. Studi Stres Oksidatif : Kadar Malondialdehyde dan Aktivitas Superoksida Dismutase Plasma pada Tuberkulosis Paru Lesi Minimal dan Lesi Luas. J Respir Indo. 2013;33(3):163–6.
  17. Busch CJ, Binder CJ. Malondialdehyde epitopes as mediators of sterile inflammation. Biochim Biophys Acta - Mol Cell Biol Lipids. 2017;1862(4):398–406.
  18. Kulkarni R, Deshpande A, Saxena R, Saxena K. A Study of Serum Malondialdehyde and Cytokine in Tuberculosis Patients. J Clin Diagnostic Res. 2013;7(10):2140–2.
  19. Altika S, Rahayu RSR. Analisis Total Status Antioksidan (TSA) Pasien Tuberkulosis (TB) Paru Kelompok Usia 30-60 Tahun di Wilayah Kerja Puskesmas Kecamatan Genuk Kota Semarang. Public Heal Perspect J. 2017;2(3):247–53.
  20. Retnoningrum DS. Mekanisme Tingkat Molekul Resistensi terhadap Beberapa Obat pada Mycobacterium Tuberculosis. Acta Pharm Indones. 2004;XXIX(3):92–5.
  21. Güney Y, Bilgihan A, Ciftçi TU, Çimen F, Coşkun O. Serum Malondialdehude Levels and Superoxide Dismutase Activities In Pulmonary Tuberculosis and Lung Cancers. Mesl Yüksekokulu Derg. 2004;6(2):33–8.
  22. Prasad AS. Zinc : Role in Immunity, Oxidative Stress and Chronic Inflammation. Clin Nutr Metab. 2009;12:646–52.
  23. Ramatina, Amalia L, Ekayanti I. Pengaruh Suplemen Anti Oksidan Terhadap Kadar Malondialdehid Plasma Mahasiswi IPB. J Gizi dan Pangan. 2014;9(1):35–42.
  24. Valkoa M, Rhodesb CJ, Moncola J, Izakovica M, Mazura M. Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chem Biol Interact. 2006;160(1):1–40.
  25. Prasad AS. Clinical, Immunological, Anti-Inflammatory and Antioxidant Roles of Zinc. Exp Gerontol. 2008;43:370–7.
  26. Maywald M, Wessels I, Rink L. Zinc Signals and Immunity. Int J Mol Sci. 2017;18:1–34.
  27. Bahi GA, Boyvin L, Méité S, M’Boh GM, Yeo K, N’Guessan KR, et al. Assessments of Serum Copper and Zinc Concentration , and The Cu / Zn Ratio Determination in Patients With Multidrug Resistant Pulmonary Tuberculosis ( MDR-TB ) in Côte d ’ Ivoire. BioMed Cent. 2017;17:1–6.
  28. Gupta KB, Gupta R, Atreja A, Verma M, Vishvkarma S. Tuberculosis and Nutrition. Lung India. 2009;26(1):9–16.
  29. Gropper SS, Smith JL. Advanced Nutrition and Human Metabolism. 6th ed. USA: Wadsworth, Cengage Learning; 2013. 500-510 p.
  30. Gropper SS, Smith JL. Advance Nutrition and Human Metabolism. Sixth Edit. USA: Wadsworth, Cengage Learning; 2013. 500-510 p.
  31. Berdanier CD, Zempleni J. Advanced Nutrition : Macronutriens, Micronutrients and Metabolism. 10th ed. New York: CRC Press; 2009. 476-482 p.
  32. Almatsier S. Prinsip Dasar Ilmu Gizi. 8th ed. Jakarta; 2009. 259-63 p.
  33. Prasad AS. Zinc : Role in Immunity, Oxidative Stress and Chronic Inflammation. Clin Nutr Metab. 2009;12:646–52.
  34. Arkhaesi N. Kadar malondialdehyde (MDA) serum Sebagai Indikator Prognosis Keluaran Pada Sepsis. Universitas Diponegoro Semarang; 2008.
  35. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, et al. Executive Summary: Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis. 2016;63(7):853–67.
  36. Yuniastuti A, Yusuf I, Massi MN, Budu. Status Antioksidan Glutation pada Pasien Tuberkulosis Paru di Balai Kesehatan Paru (BKPM) Makassar. Biosaintifika. 2013;5(2).