skip to main content

The impact of drinking brewed coffee on VO2max and blood lactate levels in sedentary males with physical activity treatment

Department of Physiology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia

Received: 24 Jan 2025; Revised: 21 Aug 2025; Accepted: 21 Oct 2025; Available online: 30 Dec 2025; Published: 30 Dec 2025.

Citation Format:
Abstract

ABSTRACT

Background: Coffee is a popular ergogenic beverage that improves stamina and reduces fatigue. Coffee's caffeine content is thought to be the main ingredient in ergogenic supplements, which increase endurance during physical activity.

Objective: This study investigates the acute effect of brewed coffee on muscle fatigue markers, namely blood lactate and volume of oxygen maximum (VO2max), in sedentary males after a standardized physical activity protocol.

Methods: This research was quasi-experimental (posttest-only with a control group design). The subjects were men aged 18-22 years, with 16 people. They were divided into a control group (n=9) and a intervention group (n=7). The intervention was heavy physical activity (1600-meter run) and Gayo Arabica coffee. Data analysis used an independent sample t-test (p < 0.05).

Results: Blood lactate levels were significantly higher in the intervention group than in the control group (15.04 ± 2.38 vs. 10.60 ± 4.10; p = 0.018), even though VO2max values were higher but not statistically significant (39.57 ± 2.37 vs. 37.62 ± 4.17; p = 0.297).

Conclusions: Coffee consumption considerably raises blood lactate levels, but it has no discernible effect on VO2max values in sedentary men who exercise vigorously. Therefore, more research is necessary to fully understand how coffee affects ergogenic and fatigue.

Keywords: Coffee; VO2max; blood lactate; sedentary; heavy physical activity

Fulltext View|Download
Keywords: Coffee; VO2max; blood lactate; sedentary; heavy physical activity

Article Metrics:

  1. World Health Organization. WHO guidelines on physical activity and sedentary behaviour: at a glance. World Heal Organ. Published online 2020:535. https://apps.who.int/iris/bitstream/handle/10665/337001/9789240014886-eng.pdf
  2. Chaput JP, Willumsen J, Bull F, et al. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: summary of the evidence. Int J Behav Nutr Phys Act. 2020;17(1):1-9. doi: 10.1186/s12966-020-01037-z
  3. Hanifah L, Nasrulloh N, Sufyan DL. Sedentary Behavior and Lack of Physical Activity among Children in Indonesia. Children. 2023;10(8):1-11. doi: 10.3390/children10081283
  4. Strain T, Flaxman S, Guthold R, et al. National, regional, and global trends in insufficient physical activity among adults from 2000 to 2022: a pooled analysis of 507 population-based surveys with 5·7 million participants. Lancet Glob Heal. 2024;12(8):e1232-e1243. doi: 10.1016/S2214-109X(24)00150-5
  5. Ministry of Health Republic of Indonesia. Laporan Nasional Riskesda 2018.; 2019. https://repository.badankebijakan.kemkes.go.id/id/eprint/3514/1/Laporan Riskesdas 2018 Nasional.pdf
  6. World Health Organization. Physical Activity Profile 2024: Physical Activity Factsheet Indonesia. Vol 3.; 2024. https://cdn.who.int/media/docs/default-source/searo/pa-factsheet2024/pa-factsheet-_indonesia2024.pdf?sfvrsn=87b811bd_3
  7. World Health Organization. WHO Guidelines on physical activity and sedentary behavior for children and adolescents, adults and older adults. 2020;(March):1-33. https://www.who.int/docs/default-source/physical-activity/call-for-consultation/draft-guideline-on-physical-activity-and-sedentray-behaviour.pdf?sfvrsn=ddf523d54
  8. Prasetyo Y. Kesadaran Masyarakat Berolahraga Untuk Peningkatan Kesehatan Dan Pembangunan Nasional. Medikora. 2013;XI:220-228. doi: 10.21831/medikora.v11i2.2819
  9. Sherwood L. Human Physiology from Cells to Systems. Vol 9. Yolanda Cossio; 2016. doi: 10.2307/3413769
  10. Theofilidis G, Bogdanis GC, Koutedakis Y, Karatzaferi C. Monitoring exercise-induced muscle fatigue and adaptations: Making sense of popular or emerging indices and biomarkers. Sports. 2018;6(4):1-15. doi: 10.3390/sports6040153
  11. Constantin-Teodosiu, D Constantin D. Molecular mechanisms of muscle fatigue. Int J Mol Sci. 2021;22(21):11587. doi: 10.3390/ijms222111587
  12. Ruíz-Moreno C, Lara B, Brito de Souza D, et al. Acute caffeine intake increases muscle oxygen saturation during a maximal incremental exercise test. Br J Clin Pharmacol. 2020;86(5):861-867. doi: 10.1111/bcp.14189
  13. Palacios G, Maroto-sánchez B. Biomarkers of physical activity and exercise. Nutr Hosp. 2015;30(May 2016):237-244. doi: 10.3305/nh.2015.31.sup3.8771
  14. Ramírez-Maldonado M, Jurado-Fasoli L, del Coso J, R. Ruiz J, Amaro-Gahete FJ. Caffeine increases maximal fat oxidation during a graded exercise test: is there a diurnal variation? J Int Soc Sports Nutr. 2021;18(1):1-9. doi: 10.1186/s12970-020-00400-6
  15. Kumar N, Warren GL, Snow TK, Millard-stafford M, Clarke ND, Millard-stafford M. Caffeine Ingestion With or Without Low-Dose Carbohydrate Improves Exercise Tolerance in Sedentary Adults. Front Nutr. 2019;6(February):1-9. doi: 10.3389/fnut.2019.00009
  16. Usman A, Arimbi, Muriyati. The Effect of Caffeine on VO2Max Athletes Ability. Int J Sci Basic Appl Res. 2017;35(3):259-261. http://gssrr.org/index.php?journal=JournalOfBasicAndApplied
  17. Brietzke C, Asano RY, de Lima FDR, et al. Caffeine effects on VO2max test outcomes investigated by a placebo perceived-as-caffeine design. Nutr Health. 2017;23(4):231-238. doi: 10.1177/0260106017723547
  18. Barcelos RP, Lima FD, Carvalho NR, Bresciani G. Caffeine effects on systemic metabolism, oxidative- inflammatory pathways, and exercise performance. Nutr Res. 2020;80(2020):1-17. doi: 10.1016/j.nutres.2020.05.005
  19. Tiyas AA, Margo E. Effect of Coffee Consumption with Muscle Strength in Male Adolescents Futsal Team. J Multidisiplin Madani. 2023;3(9):1978-1985. doi: 10.55927/mudima.v3i9.3384
  20. Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15(1):1-10. doi: 10.1186/s12970-018-0216-0
  21. Faturochman, Junaidi S, Setiowati A. The Effectiveness of Banana and Vitamin B1, B6, and B12 Administration on Muscle Fatigue. J Sport Sci Fit. 2020;6(1):41-47. http://journal.unnes.ac.id/sju/index.php/jssf
  22. Cappelletti S, Daria P, Sani G, Aromatario M. Caffeine: Cognitive and Physical Performance Enhancer or Psychoactive Drug? Curr Neuropharmacol. 2015;13(1):71-88. doi: 10.2174/1570159X13666141210215655
  23. Saud S, Salamatullah AM. Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules. 2021;26(7634):1-14. doi: 10.3390/molecules26247634
  24. Hutahean H. Phytochemical screening and analysis of caffeine content in arabica ground coffee in Takengon city using spectrophotometry ultraviolet. Juornal Econ Strateg. 2020;1(1):1-10. doi: 10.36490/journal-jps.com.v6i3.176
  25. Lesmana D, Setiawan I, Aswada DV. The Description of Physical Activity and Sedentary Behavior During Covid-19 Pandemic on “X” University’s Students. ODONTO Dent J. 2022;9(1):21. doi: 10.30659/odj.9.1.21-27
  26. Ramadhiani P, Depok UI, Fikawati S. Peer Influence As The Dominant Factor In Coffee Drink Consumption Among Non-Health Major University Of Indonesia Students In 2023. Indones J Public Heal Nutr. 2023;4(1):10-22. doi: 10.7454/ijphn.v4i1.7399
  27. Piotrowska K, Pabianek Ł. Development of physical fitness-gender differences and characteristics. Qual Sport. 2019;5(1):19-23. doi: 10.12775/qs.2019.003
  28. Olechno E, Pu´scion-Jakubik A, Zujko ME, Socha K. Influence of Various Factors on Caffeine Content in Coffee Brews. Foods. 2021;10(1208):1-29. doi: 10.3390/foods10061208
  29. Kumar N, Goswami S. Comparison of Rockport one-mile walk test and McArdle step test for the prediction of VO2 max. Saudi J Sport Med. 2019;19(3):82. doi: 10.4103/sjsm.sjsm_2_20
  30. Rowland TW. Cardiopulmonary Exercise Testing in Children and Adolescents. Vol 67. Human Kinetics; 2018. doi: 10.34045/ssem/2019/5
  31. Yusni Y, Meutia F. Anthropometry analysis of nutritional indicators in Indonesian adolescents. J Taibah Univ Med Sci. 2019;14(5):460-465. doi: 10.1016/j.jtumed.2019.07.001
  32. Zulfahmi H, Firdausi H, Rejeki PS, Herawati L. The Administration of Gayo Arabica Coffee After Acute Submaximal Physical Stress Does Not Accelerate the Reduction of Lactate Levels and the Increase in Blood Glucose in Untrained Individuals. J Biosains Pascasarj. 2021;23(02):6-11. doi: 10.20473/jbp.v5i2.2021.6-11
  33. Antonio J, Newmire DE, Stout JR, et al. Common questions and misconceptions about caffeine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr. 2024;21(1). doi: 10.1080/15502783.2024.2323919
  34. Abbotts KSS, Ewell TR, Bomar MC, Butterklee HM, Bell C. Caffeine Augments the Lactate and Interleukin-6 Response to Moderate-Intensity Exercise. Med Sci Sports Exerc. 2023;55(6):982-990. doi: 10.1249/MSS.0000000000003121
  35. Yamada AK, Pimentel GD, Pickering C, Cordeiro A V., Silva VRR. Effect of caffeine on mitochondrial biogenesis in the skeletal muscle – A narrative review. Clin Nutr ESPEN. 2022;51:1-6. doi: 10.1016/j.clnesp.2022.09.001
  36. Rios M, Becker KM, Monteiro AS, et al. Caffeine and physiological responses to submaximal exercise: a meta-analysis. Int J Sports Physiol Perform. 2024;19(3):299-306. doi: 10.1123/ijspp.2023-0201
  37. Mielgo-Ayuso J, Marques-Jiménez D, Refoyo I, et al. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients. 2019;11(2313):1-17. doi: 10.3390/nu11102313
  38. Guest NS, Vandusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18(1):1-37. doi: 10.1186/s12970-020-00383-4
  39. Campos Y, Lago-Rodríguez Á, Juan AFS, et al. Caffeine supplementation improves physical performance without affecting fatigue level: a double-blind crossover study. Biol Sport. 2022;39(3):521-528. doi: 10.5114/biolsport.2022.107479
  40. Murray RK, Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Weil PA. Harper’s Ilustrated Biochemistry. Vol 24. 28th editi. The McGraw-Hill Companies; 2009. doi: 10.1016/s0307-4412(97)80776-5
  41. Aji YG, Melita S, Dijaya R, Subali D, Kartawidjajaputra F, Suwanto A. Evaluation of Caffeine Ingested Timing on Endurance Performance based on CYP1A2 rs762551 Profiling in Healthy Sedentary Young Adults. Reports Biochem Mol Biol. 2023;11(4):663-671
  42. Stadheim HK, Stensrud T, Brage S, Jensen J. Caffeine Increases Exercise Performance, Maximal Oxygen Uptake, and Oxygen Deficit in Elite Male Endurance Athletes. Med Sci Sports Exerc. 2021;53(11):2264-2273. doi: 10.1249/MSS.0000000000002704
  43. Buttar KK, Saboo N. A review: Maximal oxygen uptake (VO2max) and its estimation methods. Int J Phys Educ Sport Heal. 2019;6(6):24-32. http://www.kheljournal.com
  44. Peker I, Gören Z, Çiloglu F, et al. Effects of Caffeine on Exercise Performance, Lactate , F FA, Triglycerides, Prolactin, Cortisol and Amylase in Maximal Aerobic Exercise. Biotechnol Biotechnol Equip. 2014;19(2):168-174. doi: 10.1080/13102818.2005.10817210
  45. San Juan AF, López-Samanes Á, Jodra P, et al. Caffeine supplementation improves anaerobic performance and neuromuscular effciency and fatigue in Olympic-level boxers. Nutrients. 2019;11(9):1-15. doi: 10.3390/nu11092120

Last update:

No citation recorded.

Last update: 2025-12-30 16:15:11

No citation recorded.