skip to main content

STUDI KOMPARATIF MODEL MACHINE LEARNING DALAM MEMPREDIKSI KETERLAMBATAN PEGAWAI: LOGISTIC REGRESSION, SVM, DAN RANDOM FOREST

*Inggrid Nindia Aprila Palupi  -  Universitas Airlangga, Indonesia
M Fariz Fadillah Mardianto  -  Universitas Airlangga, Indonesia
Imam Yuadi  -  Universitas Airlangga, Indonesia
Budiyan Mariyadi  -  Universitas Muhammadiyah Bandung, Indonesia

Citation Format:
Abstract

Keterlambatan karyawan adalah salah satu jenis pelanggaran terhadap disiplin kerja yang dapat berdampak pada produktivitas dan efektivitas organisasi. Penelitian ini bertujuan untuk mengembangkan serta membandingkan performa dari tiga algoritma machine learning Regresi Logistik, SVM, dan Random Forest dalam memprediksi keterlambatan pegawai dengan menggunakan data keterlambatan dan karakteristik individu. Dataset yang digunakan terdiri dari 1902 data, yang dibagi 80% data training dan 20% data testing dengan enam variabel, mencakup usia, lama bekerja, status pernikahan, jarak tempat tinggal ke kantor, jenis kendaraan yang digunakan, dan gaya hidup. Hasil analisis menunjukkan bahwa Random Forest memberikan kinerja prediktif yang paling baik dalam mengenali pegawai yang memiliki potensi untuk terlambat, dengan nilai akurasi tertinggi sebesar 0.82, presisi sebesar 0.93, recall sebesar 0.84, dan F1-score sebesar 0.88. Model ini terbukti dapat menunjukkan kemampuan klasifikasi yang andal dan seimbang. Analisis feature importance mengidentifikasi usia dan masa kerja sebagai faktor paling berpengaruh terhadap prediksi keterlambatan. Temuan ini tidak hanya memberikan wawasan baru dalam pengelolaan kedisiplinan pegawai, tetapi juga membuka peluang implementasi sistem peringatan dini yang dapat diintegrasikan ke dalam sistem kehadiran digital organisasi. Penelitian ini merekomendasikan perluasan variabel untuk studi lanjutan dan pemanfaatan hasil model sebagai dasar penyusunan kebijakan SDM yang lebih adaptif dan berbasis data.

 

Abstract

[Comparative Study of Machine Learning Models in Predicting Employee Delay: Logistic Regression, SVM, and Random Forest] Employee tardiness is one type of violation of work discipline that can impact organizational productivity and effectiveness. This study aims to develop and compare the performance of three machine learning algorithms Logistic Regression, SVM, and Random Forest in predicting employee tardiness using tardiness data and individual characteristics. The dataset used consists of 1902 data, which is divided into 80% training data and 20% with six variables, including age, length of service, last education level, marital status, distance from residence to office, type of vehicle used, and lifestyle. The results of the analysis show that Random Forest provides the best predictive performance in identifying employees who have the potential to be late, with the highest accuracy value of 0.82, precision of 0.93, recall of 0.84, and F1-score of 0.88. This model is proven to be able to demonstrate reliable and balanced classification capabilities. Feature importance analysis identifies age and length of service as the most influential factors in predicting tardiness. These findings not only provide new insights into employee discipline management but also open up opportunities for the implementation of an early warning system that can be integrated into the organization's digital attendance system. This study recommends expanding the variables for further studies and utilizing the model results as a basis for formulating more adaptive and data-based HR policies.

Keywords: sustainability industry; developing strategy; MCDM

Fulltext View|Download
Keywords: keterlambatan pegawai; machine learning; random forest; logistic regression; SVM; Prediksi SDM

Article Metrics:

  1. Abdulrahman Aspita Ishiaka. (2025). Assessing The Impact Of Employee Discipline On Organizational Survival: The Human Resource Management Perspective. Journal of Human, Social and Political Science Research, 7(6 SE-Articles). https://doi.org/10.70382/sjhspsr.v7i6.018
  2. Aditya, M. R., Sutanto, T., Budiman, H., Ridha, M. R. N., Syapotro, U., & Azijah, N. (2024). Machine Learning Models for Classification of Anemia from CBC Results: Random Forest, SVM, and Logistic Regression. Journal of Data Science, 2024(SE-Articles). https://iuojs.intimal.edu.my/index.php/jods/article/view/589
  3. Angulakshmi, M., Madhumithaa, N., Dokku, S., Pachar, S., Sneha, K., & Lenin, S. (2024). Predictive HR Analytics: Using Machine Learning to Forecast Workforce Trends and Needs. 2024 7th International Conference on Contemporary Computing and Informatics (IC3I), 7, 1399–1405. https://doi.org/10.1109/IC3I61595.2024.10829013
  4. Beauty, C., & Thomas, K. T. (2021). Disciplinary Procedures, Employee Punctuality and Employee Performance at Ndola City Council (Zambia). https://api.semanticscholar.org/CorpusID:235503456
  5. Borzikowsky, C., Raimer, S., & Kowalski, J. (2023). New work in modern times: predicting employees’ choice to work from home. Facilities, 41(13/14), 855–867. https://doi.org/10.1108/F-04-2023-0037
  6. De Clercq, D., Aboramadan, M., & Kundi, Y. M. (2024). How employee pandemic fears may escalate into a lateness attitude, and how a safe organizational climate can mitigate this challenge. Personnel Review, 53(4), 1039–1058. https://doi.org/10.1108/PR-11-2022-0764
  7. Douglas, S., & Roberts, R. (2020). Employee age and the impact on work engagement. Strategic HR Review, 19(5), 209–213. https://doi.org/10.1108/SHR-05-2020-0049
  8. Flynn, J. J. (2017). How commuting affects employees’ Wellbeing and Work-Life Balance: The perspective of full-time employees commuting within the greater Dublin area. https://api.semanticscholar.org/CorpusID:134524321
  9. Gandhi, P. N., Mhaske, G. S., Jangale, A., & Kadlag, A. (2020). Employee Attrition Prediction using Machine Learning. Journal of Emerging Technologies and Innovative Research. https://api.semanticscholar.org/CorpusID:262131418
  10. Gao, X., Wen, J., & Zhang, C. (2019). An Improved Random Forest Algorithm for Predicting Employee Turnover. Mathematical Problems in Engineering, 2019(1), 4140707. https://doi.org/https://doi.org/10.1155/2019/4140707
  11. Islam, M. K., Alam, M. M., Islam, M. B., Mohiuddin, K., Das, A. K., & Kaonain, M. S. (2018). An Adaptive Feature Dimensionality Reduction Technique Based on Random Forest on Employee Turnover Prediction Model BT - Advances in Computing and Data Sciences (M. Singh, P. K. Gupta, V. Tyagi, J. Flusser, & T. Ören (eds.); pp. 269–278). Springer Singapore
  12. Kushwaha, P. K., Rana, A., Srivastava, S., Saifi, A., Tavish, A., & Chaturvedi, P. (2023). Employee Absenteeism Prediction Using Machine Learning. 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 10, 116–121. https://doi.org/10.1109/UPCON59197.2023.10434342
  13. Le, T. P. L., & Trinh, T. A. (2016). Encouraging Public Transport Use to Reduce Traffic Congestion and Air Pollutant: A Case Study of Ho Chi Minh City, Vietnam. Procedia Engineering, 142, 236–243. https://doi.org/https://doi.org/10.1016/j.proeng.2016.02.037
  14. Luksyte, A., Waite, E., Avery, D. R., & Roy, R. (2013). Held to a different standard: Racial differences in the impact of lateness on advancement opportunity. Journal of Occupational and Organizational Psychology, 86(2), 142–165. https://doi.org/https://doi.org/10.1111/joop.12010
  15. Maharjan, R. (2022). Employee Churn Prediction using Logistic Regression and Support Vector Machine. https://api.semanticscholar.org/CorpusID:261723658
  16. Mendis, M. V. S., & Weerakkody, W. A. S. (2014). The Relationship between Work Life Balance and Employee Performance: With Reference to Telecommunication Industry of Sri Lanka. https://api.semanticscholar.org/CorpusID:113705959
  17. Mercara, J. L. D. (2020). Prediction of Employees’ Lateness Determinants using Machine Learning Algorithms. International Journal of Advanced Trends in Computer Science and Engineering. https://api.semanticscholar.org/CorpusID:215941567
  18. Mohbey, K. K. (2020). Employee’s Attrition Prediction Using Machine Learning Approaches. https://api.semanticscholar.org/CorpusID:226580682
  19. Murzaeva, A., Illik, V., & Koc, K. Y. (2024). Employee Turnover Prediction on Synthetic and Real Datasets. 2024 9th International Conference on Computer Science and Engineering (UBMK), 1–5. https://doi.org/10.1109/UBMK63289.2024.10773575
  20. Mutiara, S., & Candra, A. (2024). Pengaruh Motivasi Kerja Dan Disiplin Kerja Terhadap Kinerja Karyawan Di Bpjs Kesehatan Cabang Bandar Lampung. Journal of Management : Small and Medium Enterprises (SMEs), 17(3 SE-Articles). https://doi.org/10.35508/jom.v17i3.19035
  21. Nayak, S., & Palai, P. (2023). Employee Attrition System Prediction using Random Forest Classifier. International Journal of Computer and Communication Technology. https://api.semanticscholar.org/CorpusID:261021246
  22. Odionu, C. S., Bristol-Alagbariya, B., & Okon, R. (2024). Data-driven decision making in human resources to optimize talent acquisition and retention. International Journal of Scholarly Research and Reviews. https://api.semanticscholar.org/CorpusID:274988834
  23. Padmanabhan, L., & Magesh, D. R. (2016). Difference between Employees Marital Status and Performance Level in IT Industry. Imperial Journal of Interdisciplinary Research, 2. https://api.semanticscholar.org/CorpusID:54757538
  24. Patil, J., & Jadhav, P. (2023). Predicting HR Churn with Python and Machine Learning. Journal of Advanced Zoology. https://doi.org/10.53555/jaz.v44is8.3526
  25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830
  26. Puji Lestari, U., & Sinambela, E. A. (2021). The Role Of Tenure And Incentives On Employee Behavior. Current Advanced Research On Sharia Finance And Economic Worldwide, 1(1 SE-Articles), 12–17. https://doi.org/10.55047/cashflow.v1i1.17
  27. Reznychenko, T., Uglickich, E., & Nagy, I. (2024). Accuracy Comparison of Logistic Regression, Random Forest, and Neural Networks Applied to Real MaaS Data. 2024 Smart City Symposium Prague (SCSP), 1–5. https://doi.org/10.1109/SCSP61506.2024.10552715
  28. Rosett, C. M., & Hagerty, A. (2021). Analytics About Employees BT - Introducing HR Analytics with Machine Learning: Empowering Practitioners, Psychologists, and Organizations (C. M. Rosett & A. Hagerty (eds.); pp. 7–21). Springer International Publishing. https://doi.org/10.1007/978-3-030-67626-1_2
  29. Salazar-Serna, K., Cadavid, L., Franco, C. J., & Carley, K. M. (2023). Simulating Transport Mode Choices in Developing Countries BT - Social, Cultural, and Behavioral Modeling (R. Thomson, S. Al-khateeb, A. Burger, P. Park, & A. A. Pyke (eds.); pp. 209–218). Springer Nature Switzerland
  30. Sari, S. F., & Lhaksmana, K. M. (2022). Employee Attrition Prediction Using Feature Selection with Information Gain and Random Forest Classification. Journal of Computer System and Informatics (JoSYC). https://api.semanticscholar.org/CorpusID:255684494
  31. Shahikhaneh, A., Azari, K. A., & Aghayan, I. (2020). Modeling the Transport Mode Choice Behavior of Motorcyclists. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(1), 175–184. https://doi.org/10.1007/s40996-019-00236-4
  32. Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal of Data Warehousing, 5(4), 13–22
  33. Sujaini, H. (2020). Image Classification of Tourist Attractions with K-Nearest Neighbor, Logistic Regression, Random Forest, and Support Vector Machine. International Journal on Advanced Science, Engineering and Information Technology, 10(6 SE-Articles), 2207–2212. https://doi.org/10.18517/ijaseit.10.6.9098
  34. Sujatha, P., & Dhivya, R. S. (2021). Qualitative Assessment of Machine Learning Classifiers for Employee Performance Prediction BT - Intelligent Computing and Innovation on Data Science (S.-L. Peng, S.-Y. Hsieh, S. Gopalakrishnan, & B. Duraisamy (eds.); pp. 339–349). Springer Nature Singapore
  35. Valery, M. B., Santati, P., & Hadjri, M. I. (2023). The Influence of Work-Life Balance on Employee Performance: (Empirical Study at Telkomsel Regional Sumbagsel Office). JPIM (Jurnal Penelitian Ilmu Manajemen), 8(2 SE-), 208–217. https://doi.org/10.30736/jpim.v8i2.1601
  36. Zupančič, P., & Panov, P. (2024). Predicting Employee Absence from Historical Absence Profiles with Machine Learning. In Applied Sciences (Vol. 14, Issue 16). https://doi.org/10.3390/app14167037

Last update:

No citation recorded.

Last update:

No citation recorded.