Jurusan Ilmu Komputer / Informatika, Universitas Diponegoro, Indonesia
BibTex Citation Data :
@article{JMASIF34875, author = {Emilia Widiyanti and Sukmawati Endah}, title = {Pengenalan Emosi dalam Musik Berdasarkan Musical Features Menggunakan Support Vector Regression}, journal = {Jurnal Masyarakat Informatika}, volume = {11}, number = {2}, year = {2020}, keywords = {Soundtrack, Music Emotion Recognition, Musical Features, Support Vector Regression}, abstract = {Musik dibuat untuk menyampaikan emosi dan seringkali dimanfaatkan dalam berbagai kegiatan sehari-hari. Music Emotion Recognition atau pengenalan emosi dalam musik menjadi salah satu bidang penelitian yang ikut berkembang seiring dengan perkembangan jenis dan pemanfaatan musik. Penelitian ini menyajikan hasil pengenalan emosi pada musik dengan musical features menggunakan Support Vector Regression dengan jenis pelatihan ɛ-Support Vector Regression dan ʋ-Support Vector Regression serta kombinasi fitur terbaik yang menghasilkan model terbaik. Data yang digunakan sejumlah 165 data musik yang berbentuk musik soundtrack instrumental. Dari penelitan ini dihasilkan dua model terbaik menggunakan pelatihan ʋ-SVR. Model yang dihasilkan yaitu model pengenalan angle dengan masukan fitur terbaik adalah fitur Pitch dan Energy , dan model pengenalan distance dengan masukan fitur terbaik Zero Crossing Rate dan Beat. Model dihasilkan dengan nilai parameter pelatihan model untuk cost=2 7 , gamma=2 -7 dan nu=2 -2 pada model angle dan cost=2 7 , gamma=2 -8 dan nu=2 -2 pada model distance. Pengenalan dengan kedua model tersebut menghasilkan akurasi sebesar 37,75%.}, issn = {2777-0648}, pages = {1--14} doi = {10.14710/jmasif.11.2.34875}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/34875} }
Refworks Citation Data :
Article Metrics:
Last update:
Music Recommendation System Using Content-based Filtering Method with Euclidean Distance Algorithm
Last update: 2024-11-23 19:49:31
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.