Universitas Diponegoro, Indonesia
BibTex Citation Data :
@article{JMASIF41017, author = {Andika Pratama and Sukmawati Endah}, title = {Prediksi Beban Listrik PT. PLN (Persero) Area Semarang Menggunakan Metode Support Vector Regression}, journal = {Jurnal Masyarakat Informatika}, volume = {12}, number = {1}, year = {2021}, keywords = {Prediksi, Beban Listrik, Support Vector Regression}, abstract = {Tren kenaikan konsumsi listrik dan tidak stabilnya beban listrik puncak bulanan membuat PT. PLN (Persero) sebagai penyedia layanan listrik perlu melakukan perencanaan produksi yang matang agar dapat melakukan penjadwalan perawatan sistem tenaga listrik serta penyediaan cadangan bahan bakar untuk menjaga keberlangsungan produksi listrik. Perencanaan produksi listrik untuk keperluan penjadwalan perawatan sistem dan penyediaan cadangan bahan bakar dilakukan dengan melakukan prediksi beban listrik jangka menengah. Penelitian ini menyajikan hasil prediksi beban listrik menggunakan metode Support Vector Regression dengan menggunakan fitur prediktor yang terdiri dari beban listrik, daya tersambung, jumlah pelanggan listrik, dan PDRB-ADHB. Data yang digunakan berasal dari PT. PLN (Persero) Area Semarang sejumlah 75 data (Juni 2011 - Desember 2017) dan data dari BPS Kota Semarang sejumlah 7 data (2010 – 2016). Hasil penelitian menunjukkan nilai error menggunakan MAPE yang diperoleh sebesar 4,03 % untuk nilai parameter terbaik C = 108, ɛ = 106, dan fungsi Kernel Linear, dengan fitur prediktor terbaik adalah daya tersambung dan jumlah pelanggan listrik. Data prediksi bulan Oktober – Desember 2017 didapatkan hasil nilai error MAPE sebesar 3,0384 %.}, issn = {2777-0648}, pages = {1--9} doi = {10.14710/jmasif.12.1.41017}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/41017} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2025-01-21 01:16:23
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.