Studi Komparasi Ekstraksi Fitur pada Pengenalan Wajah Menggunakan Principal Component Analysis (PCA) dan Wavelet Daubechies

*Riskyana Dewi Intan P  -  University State of Surabaya, Indonesia
Published: 31 Oct 2015.
Open Access
Citation Format:
Abstract
Paper ini membahas perbandingan ekstraksi fitur untuk pengenalan wajah menggunakan metode Principal Component Analysis (PCA) dan Wavelet Daubechies untuk pengenalan wajah . Basis wavelet daubechies yang digunakan adalah wavelet db2, db4, dan db8. Setiap dekomposisi dilakukan hingga  level  ke-3 yang kemudian diambil fitur aproksimasi wavelet dan fitur statistik wavelet. Variasi nilai komponen utama dimulai dari nilai komponen ke-1 hingga nilai komponen ke-100 dari 4096 nilai eigen. Nilai komponen ke-1 memiliki presentase sebesar 62% sedangkan nilai komponen ke-100 memiliki presentase sebesar 99% dari total nilai eigen,. Pengujian sistem menggunakan 216 citra wajah yang diambil dari dataset The Japanese Female Facial Expression (JAFFE) yang terdiri dari 10 individu dengan masing-masing sekitar 20 wajah per- individu. Pemilihan data train dan data tes menggunakan cross validation  dengan rata-rata akurasi 94.42%.  Dari hasil percobaan menggunakan Random Forest Classifier diperoleh tingkat pengenalan tertinggi untuk ekstraksi menggunakan PCA sebesar 100% pada variasi data 95% ,sedangkan tingkat pengenalan tertinggi untuk ekstraksi menggunakan Wavelet Daubechies sebesar  98.611% pada wavelet db2 menggunakan fitur aproksimasi wavelet.
Keywords: ekstraksi fitur; PCA; pengenalan wajah; Random Forest Classifier;Wavelet Daubechies

Article Metrics:

Last update: 2021-02-28 17:15:10

No citation recorded.

Last update: 2021-02-28 17:15:10

  1. Classification of Japanese fagaceae wood based on microscopic image analysis

    Salma . 2019 7th International Conference on Information and Communication Technology, ICoICT 2019, 2019. doi: 10.1109/ICoICT.2019.8835270
  2. Designing Image Correction Software with the Wavelet Method

    Iskandar A.. Journal of Physics: Conference Series, 127 (1), 2019. doi: 10.1088/1742-6596/1364/1/012028