1Dian Nuswantoro University, Indonesia
2Universitas Dian Nuswantoro, Indonesia
BibTex Citation Data :
@article{JMASIF42222, author = {Christy Atika Sari and Eko Hari Rachmawanto}, title = {Fitur Esktraksi LBP dan Naive Bayes dalam Klasifikasi Jenis Pepaya Berdasarkan Citra Daun}, journal = {Jurnal Masyarakat Informatika}, volume = {12}, number = {2}, year = {2021}, keywords = {Naïve Bayes, Local Binary Pattern, Klasifikasi Daun, Ekstraksi Fitur}, abstract = { Tanaman merupakan bagian terpenting dalam kehidupan makhluk hidup sebagai oksigen untuk bernafas, selain itu juga digunakan sumber makanan, bahan bakar, obat-obatan dan masih banyak lagi manfaatnya. Salah satunya tanaman buah pepaya, bisa digunakan untuk bahan makanan maupun obat-obatan. Tanaman buah pepaya ini memiliki banyak jenis dan bisa diklasifikasikan berdasarkan bentuk daunnya. Jenis daun buah papaya yang digunakan dalam penelitian ini, yaitu : daun buah pepaya Sumatera, daun buah pepaya California, daun buah pepaya Hawai, daun buah pepaya cibinong dan daun buah pepaya Bangkok. Jumlah dataset yang digunakan adalah 150 citra dan akan dibagi menjadi 5 kelas yang terdiri dari 25 data training dan 5 data testing masing-masing kelas. Proses klasifikasi ini menggunakan metode Local Binary Pattern untuk ektraksi fitur dan metode Naïve Bayes Classifier sebagai metode klasifikasinya. Metode Local Binary Pattern operator sederhana dan efisien untuk menggambarkan pola gambar local dan mendapatkan hasil yang baik dalam tekstur pengambilan gambar. Sedangkan metode Naïve Bayes Classifier adalah metode yang paling sederhana dengan menggunakan peluang yang ada, dimana tempatnya mengasumsikan bahwa setiap variabel adalah independensi. Berdasarkan hasil pengujian yang dilakukan, penggunaan Naïve Bayes Classifier ditambah dengan ekstraksi fitur Local Binary Pattern didapatkan nilai akurasi 96% pada percobaan pertama dan 93% pada percobaan kedua. }, issn = {2777-0648}, pages = {102--113} doi = {10.14710/jmasif.12.2.42222}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/42222} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2024-10-12 05:42:59
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.