skip to main content

Aspect-Based Sentiment Analysis on Nickel Mining Activities in Raja Ampat to Support Sustainable Development Goals

Department of Information Systems, Faculty of Computer Science, Universitas Sriwijaya, Indonesia

Received: 20 Aug 2025; Revised: 9 Jan 2026; Accepted: 12 Jan 2026; Published: 11 Feb 2026.
Open Access Copyright (c) 2026 The authors. Published by Department of Informatics Universitas, Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Nickel mining in Raja Ampat has triggered significant public reaction, particularly on social media, due to its environmental and social impacts. However, public opinion on this issue has not been systematically analyzed. This study aims to examine public sentiment toward this issue using the Aspect-Based Sentiment Analysis (ABSA) approach with four classification algorithms: Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest, all optimized through the Particle Swarm Optimization (PSO) method. Data was collected from X between June 1 and June 30, 2025, and analyzed based on three main aspects, namely environmental, social, and economic, with a total of 4,025 datasets. The analysis shows that negative sentiment dominates over positive sentiment, with the environmental aspect being the main focus, especially regarding coral reef damage and marine pollution. Among the four models used, the optimized Support Vector Machine algorithm achieved the highest performance with an accuracy of 87.5%. These findings are expected to serve as an evaluation for the government regarding mining permits to formulate policies that support the achievement of SDG 14 (Life Below Water) and SDG 15 (Life on Land).
Fulltext View|Download
Keywords: Aspect-Based Sentiment Analysis, Nickel Mining, Sustainable Development Goals (SDGs), Support Vector Machine, Particle Swarm Optimization

Article Metrics:

  1. M. G. Y. Lo et al., “Nickel mining reduced forest cover in Indonesia but had mixed outcomes for well-being,” One Earth, vol. 7, no. 11, pp. 2019–2033, Nov. 2024, doi: 10.1016/j.oneear.2024.10.010
  2. M. S. Agussalim, A. Ariana, and R. Saleh, “Kerusakan Lingkungan Akibat Pertambangan Nikel di Kabupaten Kolaka Melalui Pendekatan Politik Lingkungan,” Palita: Journal of Social Religion Research, vol. 8, no. 1, pp. 37–48, Apr. 2023, doi: 10.24256/pal.v8i1.3610
  3. Antara News, “Tambang dan ekosistem di jantung biodiversitas Raja Ampat,” Antara News
  4. Kementerian ESDM, “Minerba One Map Indonesia.” Accessed: Jun. 24, 2025. [Online]. Available: https://geoportal.esdm.go.id/minerba
  5. T. Priono, R. Rosariastuti, and W. Sih Dewi, “The Influence of Length of Rehabilitation Process for Ex-Nickel Mining Land on Soil pH, Soil Organic Matter, Population and Distribution of Soil Microbes,” Jurnal Teknik Pertanian Lampung, vol. 14, no. 1, pp. 99–106, 2024, doi: 10.23960/jtep-l.v14i1.99-106
  6. J. Y. M. Nip and B. Berthelier, “Social Media Sentiment Analysis,” Encyclopedia, vol. 4, no. 4, pp. 1590–1598, Oct. 2024, doi: 10.3390/encyclopedia4040104
  7. P. Nandwani and R. Verma, “A review on sentiment analysis and emotion detection from text,” Dec. 01, 2021, Springer. doi: 10.1007/s13278-021-00776-6
  8. M. Pellert, H. Metzler, M. Matzenberger, and D. Garcia, “Validating daily social media macroscopes of emotions,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-14579-y
  9. M. Rodríguez-Ibánez, A. Casánez-Ventura, F. Castejón-Mateos, and P. M. Cuenca-Jiménez, “A review on sentiment analysis from social media platforms,” Aug. 01, 2023, Elsevier Ltd. doi: 10.1016/j.eswa.2023.119862
  10. N. Kumar, R. Talwar, S. Tiwari, and P. Agarwal, “Aspect based sentiment analysis of Twitter mobile phone reviews using LSTM and Convolutional Neural Network,” International Journal of Experimental Research and Review, vol. 43, pp. 146–159, 2024, doi: 10.52756/ijerr.2024.v43spl.011
  11. Salsabila, S. M. P. Tyas, Y. Romadhona, and D. Purwitasari, “Aspect-based Sentiment and Correlation-based Emotion Detection on Tweets for Understanding Public Opinion of Covid-19.,” Journal of Information Systems Engineering and Business Intelligence, vol. 9, no. 1, pp. 84–94, 2023, doi: 10.20473/jisebi.9.1.84-94
  12. J. Wang, J. Wei, F. Tian, and Y. Wei, “A comparative study of machine learning models for sentiment analysis of transboundary rivers news media articles,” Soft comput, vol. 28, no. 23, pp. 13331–13347, Dec. 2024, doi: 10.1007/s00500-024-10357-2
  13. Z. Ahmad, W. Haider Bangyal, K. Nisar, M. Reazul Haque, and M. Adil Khan, “Comparative Analysis Using Machine Learning Techniques for Fine Grain Sentiments,” Journal on Artificial Intelligence, vol. 4, no. 1, pp. 49–60, 2022, doi: 10.32604/jai.2022.017992
  14. D. Freitas, L. G. Lopes, and F. Morgado-Dias, “Particle Swarm Optimisation: A historical review up to the current developments,” Mar. 01, 2020, MDPI AG. doi: 10.3390/E22030362
  15. J. W. Iskandar and Y. Nataliani, “Comparison of Naïve Bayes, SVM, and k-NN for Aspect-Based Gadget Sentiment Analysis,” Jurnal RESTI, vol. 5, no. 6, pp. 1120–1126, Dec. 2021, doi: 10.29207/resti.v5i6.3588
  16. A. Fauzi and A. Y. Heri, “Optimasi Algoritma Klasifikasi Naive Bayes, Decision Tree, K-Nearest Neighbor, dan Random Forest menggunakan Algoritma Particle Swarm Optimization pada Diabetes Dataset,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 8, no. 3, Dec. 2022, doi: 10.26418/jp.v8i3.56656
  17. C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on applying CRISP-DM process model,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 526–534. doi: 10.1016/j.procs.2021.01.199
  18. S. N. Selamat, N. Abd Majid, and A. Mohd Taib, “A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia,” Sustainability (Switzerland), vol. 15, no. 1, Jan. 2023, doi: 10.3390/su15010861
  19. S. Sathyanarayanan, “Confusion Matrix-Based Performance Evaluation Metrics,” African Journal of Biomedical Research, pp. 4023–4031, Nov. 2024, doi: 10.53555/ajbr.v27i4s.4345
  20. A. Wafda, D. H. Fudholi, and J. Nugraha, “ASPECT-BASED SENTIMENT ANALYSIS ON TWITTER TWEETS ABOUT THE MERDEKA CURRICULUM USING INDOBERT,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 10, no. 3, Feb. 2025, doi: 10.33480/jitk.v10i3.5692
  21. A. Rajani and A. H. Hasugian, “Sentiment Analysis on the Planned Nickel Mining Development in Raja Ampat Using the Sentiment Analysis on the Planned Nickel Mining Development in Raja Ampat Using the Random Forest Algorithm,” Jatilima : Jurnal Multimedi dan Teknologi Informasi, vol. 07, no. 03, 2025, doi: 10.54209/jatilima.v7i03.1565
  22. W. Ahmad, H. U. Khan, F. K. Alarfaj and M. Alreshoodi, "Aspect-Based Sentiment Analysis: A Comprehensive Review and Open Research Challenges," in IEEE Access, vol. 13, pp. 65138-65182, 2025, doi: 10.1109/ACCESS.2025.3555744
  23. K. Pilgrim and S. Bohnet-Joschko, “Corporate Social Responsibility on Twitter: A Review of Topics and Digital Communication Strategies’ Success Factors,” Dec. 01, 2022, MDPI. doi: 10.3390/su142416769
  24. Y. C. Hua, P. Denny, J. Wicker, and K. Taskova, “A systematic review of aspect-based sentiment analysis: domains, methods, and trends,” Artif Intell Rev, vol. 57, no. 11, Nov. 2024, doi: 10.1007/s10462-024-10906-z
  25. I. Perikos and A. Diamantopoulos, “Explainable Aspect-Based Sentiment Analysis Using Transformer Models,” Big Data and Cognitive Computing, vol. 8, no. 11, Nov. 2024, doi: 10.3390/bdcc8110141
  26. S. A. S. Mola, R. V. K. I. O. Roma, and T. Widiastuti, Text Mining Analisis Sentimen dengan Lexicon. Kaizen Media Publishing, 2025
  27. R. Maulana and E. Eliyani, “Diabetes Classification Algorithm Optimization Using Particle Swarm Optimization on Naïve Bayes, C4.5 and Random Forest,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 14, no. 4, pp. 499–509, Oct. 2025, doi: 10.32736/sisfokom.v14i4.2431
  28. R. Faizal Amir and I. Agus Sobari, “Penerapan PSO Over Sampling Dan Adaboost Random Forest Untuk Memprediksi Cacat Software,” IJSE-Indonesian Journal on Software Engineering, vol. 6, no. 2, pp. 230–239, 2020

Last update:

No citation recorded.

Last update: 2026-02-12 15:27:34

No citation recorded.