skip to main content

Aspect-Based Sentiment Analysis on Nickel Mining Activities in Raja Ampat to Support Sustainable Development Goals

Department of Computer Science, Universitas Sriwijaya, Jl. Palembang – Prabumulih KM.32 Kabupaten Ogan Ilir, Sumatera Selatan, Indonesia, Indonesia

Received: 20 Aug 2025; Revised: 9 Jan 2026; Accepted: 12 Jan 2026; Published: 20 Jan 2026.
Open Access Copyright (c) 2026 The authors. Published by Department of Informatics Universitas, Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Nickel mining in Raja Ampat has triggered significant public reaction, particularly on social media, due to its environmental and social impacts. However, public opinion on this issue has not been systematically analyzed. This study aims to examine public sentiment toward this issue using the Aspect-Based Sentiment Analysis (ABSA) approach with four classification algorithms, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest, all optimized through the Particle Swarm Optimization (PSO) method. Data was collected from Twitter between June 1 and June 30, 2025, and analyzed based on three main aspects, namely environmental, social, and economic, with a total of 4,025 datasets. The analysis shows that negative sentiment dominates over positive sentiment, with the environmental aspect being the main focus, especially regarding coral reef damage and marine pollution. Among the four models used, the optimized Support Vector Machine algorithm achieved the highest performance with an accuracy of 87.5%. These findings are expected to serve as an evaluation for the government regarding mining permits to formulate policies that support the achievement of SDG 14 (Life Below Water) and SDG 15 (Life on Land).
Fulltext View|Download
Keywords: Aspect-Based Sentiment Analysis, Nickel Mining, Sustainable Development Goals (SDGs), Support Vector Machine, Particle Swarm Optimization

Article Metrics:

  1. M. G. Y. Lo et al., “Nickel mining reduced forest cover in Indonesia but had mixed outcomes for well-being,” One Earth, vol. 7, no. 11, pp. 2019–2033, Nov. 2024, doi: 10.1016/j.oneear.2024.10.010
  2. M. S. Agussalim, A. Ariana, and R. Saleh, “Kerusakan Lingkungan Akibat Pertambangan Nikel di Kabupaten Kolaka Melalui Pendekatan Politik Lingkungan,” Palita: Journal of Social Religion Research, vol. 8, no. 1, pp. 37–48, Apr. 2023, doi: 10.24256/pal.v8i1.3610
  3. Antara News, “Tambang dan ekosistem di jantung biodiversitas Raja Ampat,” Antara News
  4. Kementerian ESDM, “Minerba One Map Indonesia.”
  5. T. Priono, R. Rosariastuti, and W. Sih Dewi, “The Influence of Length of Rehabilitation Process for Ex-Nickel Mining Land on Soil pH, Soil Organic Matter, Population and Distribution of Soil Microbes,” Jurnal Teknik Pertanian Lampung, vol. 14, no. 1, pp. 99–106, 2024, doi: 10.23960/jtep-l.v14i1.99-106
  6. J. Y. M. Nip and B. Berthelier, “Social Media Sentiment Analysis,” Encyclopedia, vol. 4, no. 4, pp. 1590–1598, Oct. 2024, doi: 10.3390/encyclopedia4040104
  7. P. Nandwani and R. Verma, “A review on sentiment analysis and emotion detection from text,” Dec. 01, 2021, Springer. doi: 10.1007/s13278-021-00776-6
  8. M. Pellert, H. Metzler, M. Matzenberger, and D. Garcia, “Validating daily social media macroscopes of emotions,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-14579-y
  9. M. Rodríguez-Ibánez, A. Casánez-Ventura, F. Castejón-Mateos, and P. M. Cuenca-Jiménez, “A review on sentiment analysis from social media platforms,” Aug. 01, 2023, Elsevier Ltd. doi: 10.1016/j.eswa.2023.119862
  10. N. Kumar, R. Talwar, S. Tiwari, and P. Agarwal, “Aspect based sentiment analysis of Twitter mobile phone reviews using LSTM and Convolutional Neural Network,” International Journal of Experimental Research and Review, vol. 43, pp. 146–159, 2024, doi: 10.52756/ijerr.2024.v43spl.011
  11. A. Wafda, D. H. Fudholi, and J. Nugraha, “ASPECT-BASED SENTIMENT ANALYSIS ON TWITTER TWEETS ABOUT THE MERDEKA CURRICULUM USING INDOBERT,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 10, no. 3, Feb. 2025, doi: 10.33480/jitk.v10i3.5692
  12. Salsabila, S. M. P. Tyas, Y. Romadhona, and D. Purwitasari, “Aspect-based Sentiment and Correlation-based Emotion Detection on Tweets for Understanding Public Opinion of Covid-19.,” Journal of Information Systems Engineering and Business Intelligence, vol. 9, no. 1, pp. 84–94, 2023, doi: 10.20473/jisebi.9.1.84-94
  13. J. Wang, J. Wei, F. Tian, and Y. Wei, “A comparative study of machine learning models for sentiment analysis of transboundary rivers news media articles,” Soft comput, vol. 28, no. 23, pp. 13331–13347, Dec. 2024, doi: 10.1007/s00500-024-10357-2
  14. Z. Ahmad, W. Haider Bangyal, K. Nisar, M. Reazul Haque, and M. Adil Khan, “Comparative Analysis Using Machine Learning Techniques for Fine Grain Sentiments,” Journal on Artificial Intelligence, vol. 4, no. 1, pp. 49–60, 2022, doi: 10.32604/jai.2022.017992
  15. D. Freitas, L. G. Lopes, and F. Morgado-Dias, “Particle Swarm Optimisation: A historical review up to the current developments,” Mar. 01, 2020, MDPI AG. doi: 10.3390/E22030362
  16. J. W. Iskandar and Y. Nataliani, “Comparison of Naïve Bayes, SVM, and k-NN for Aspect-Based Gadget Sentiment Analysis,” Jurnal RESTI, vol. 5, no. 6, pp. 1120–1126, Dec. 2021, doi: 10.29207/resti.v5i6.3588
  17. A. Fauzi and A. Y. Heri, “Optimasi Algoritma Klasifikasi Naive Bayes, Decision Tree, K-Nearest Neighbor, dan Random Forest menggunakan Algoritma Particle Swarm Optimization pada Diabetes Dataset,” vol. 8, no. 3, 2022
  18. C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on applying CRISP-DM process model,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 526–534. doi: 10.1016/j.procs.2021.01.199
  19. S. N. Selamat, N. Abd Majid, and A. Mohd Taib, “A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia,” Sustainability (Switzerland), vol. 15, no. 1, Jan. 2023, doi: 10.3390/su15010861
  20. S. Sathyanarayanan, “Confusion Matrix-Based Performance Evaluation Metrics,” African Journal of Biomedical Research, pp. 4023–4031, Nov. 2024, doi: 10.53555/ajbr.v27i4s.4345
  21. C. Leggerini and M. Bannò, “From Tweets to Insights: Social Opinion Mining on Corporate Social Responsibility,” Corp Soc Responsib Environ Manag, 2025, doi: 10.1002/csr.70016
  22. K. Pilgrim and S. Bohnet-Joschko, “Corporate Social Responsibility on Twitter: A Review of Topics and Digital Communication Strategies’ Success Factors,” Dec. 01, 2022, MDPI. doi: 10.3390/su142416769
  23. R. Faizal Amir and I. Agus Sobari, “Penerapan PSO Over Sampling Dan Adaboost Random Forest Untuk Memprediksi Cacat Software,” IJSE-Indonesian Journal on Software Engineering, vol. 6, no. 2, pp. 230–239, 2020
  24. V. Moretti, N. R. Corraini, E. L. Melo, M. E. G. Scherer, and J. C. Colmenero, “Progress towards the Sustainable Development Goal 14 (Life below water) in the context of Brazil: A multicriteria approach,” Sustainable Futures, vol. 8, Dec. 2024, doi: 10.1016/j.sftr.2024.100410
  25. B. Haas, “Achieving SDG 14 in an equitable and just way,” Int Environ Agreem, vol. 23, no. 2, pp. 199–205, Jun. 2023, doi: 10.1007/s10784-023-09603-z

Last update:

No citation recorded.

Last update: 2026-01-21 05:52:40

No citation recorded.