BibTex Citation Data :
@article{JSINBIS12097, author = {Dwi Pudyastuti and Toni Prahasto and Achmad Widodo}, title = {Diagnosa Kerusakan Bearing Menggunakan Principal Component Analysis (PCA) dan Naïve Bayes Classifier}, journal = {JSINBIS (Jurnal Sistem Informasi Bisnis)}, volume = {6}, number = {2}, year = {2016}, keywords = {Data mining; Fault Diagnosis; PCA; Naïve Bayes Classification}, abstract = { This research is discussing about the usage of data mining which addressed for bearing fault diagnosis. Bearing was one of the essential parts in industry machinery. Bearing was used to reduce machines frictions or could be a moving component which oppressed each other. This fault diagnosis can avoid loss and damage of other machines components. This research was started with data preprocessing using wavelet discrete transformation, feature extraction, feature reduction using Principal Component Analysis (PCA), and classification process using Naïve Bayes classifier methods. Naïve Bayes Classifier is a classification method which based on probability and Bayesian theorem. Output of these method shows that Naïve Bayes classification have a good performance which shown by a good accuracy in each data test. }, issn = {2502-2377}, pages = {114--123} doi = {10.21456/vol6iss2pp114-123}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/12097} }
Refworks Citation Data :
This research is discussing about the usage of data mining which addressed for bearing fault diagnosis. Bearing was one of the essential parts in industry machinery. Bearing was used to reduce machines frictions or could be a moving component which oppressed each other. This fault diagnosis can avoid loss and damage of other machines components. This research was started with data preprocessing using wavelet discrete transformation, feature extraction, feature reduction using Principal Component Analysis (PCA), and classification process using Naïve Bayes classifier methods. Naïve Bayes Classifier is a classification method which based on probability and Bayesian theorem. Output of these method shows that Naïve Bayes classification have a good performance which shown by a good accuracy in each data test.
Article Metrics:
Last update:
Penulis yang mengirimkan naskah harus memahami dan menyetujui bahwa jika diterima untuk dipublikasikan, hak cipta dari artikel adalah milik JSINBIS dan Universitas Diponegoro sebagai penerbit jurnal.Hak cipta (copyright) meliputi hak eksklusif untuk mereproduksi dan memberikan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm dan setiap reproduksi lain yang sejenis, serta terjemahan. Penulis mempunyai hak untuk hal-hal berikut:
JSINBIS dan Universitas Diponegoro serta Editor melakukan segala upaya untuk memastikan bahwa tidak ada data, pendapat atau pernyataan yang salah atau menyesatkan yang dipublikasikan di jurnal ini. Isi artikel yang diterbitkan di JSINBIS adalah tanggung jawab tunggal dan eksklusif dari masing-masing penulis.
View My Stats This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.