Evaluasi Performa Support Vector Machine Classifier Terhadap Penyakit Mental

*Mhd Furqan  -  Departemen Ilmu Komputer, Universitas Islam Negeri Sumatera Utara, Indonesia
Rakhmat Kurniawan  -  Departemen Ilmu Komputer, Universitas Islam Negeri Sumatera Utara, Indonesia
Kiki Iranda HP  -  Departemen Ilmu Komputer, Universitas Islam Negeri Sumatera Utara, Indonesia
Received: 25 Oct 2020; Revised: 2 Dec 2020; Accepted: 3 Dec 2020; Published: 23 Dec 2020; Available online: 24 Dec 2020.
DOI: https://doi.org/10.21456/vol10iss2pp203-210 View
CTA Agreement
Subject
Type Research Instrument
  Download (351KB)    Indexing metadata
Open Access
Citation Format:
Abstract

Expression of genes found in the brains of autism, bipolar, and schizophrenia patients identified as overlapping. The overlap is a state in which the values of genes are similar. This paper aims to determine the best performance of support vector machines algorithm in classifying autism, bipolar, and schizophrenia based on the expression of genes using genome-wide association studies data. Using three support vector machine kernels, this study evaluates the performance of gaussian, laplacian, and sigmoid for genome-wide association studies datasets. The datasets were obtained from Psychiatric Genomics Consortium publications, where 660 data were taken with each disorder consisting of 220 data. This study proposes an optimal kernel for one-against-one and one-against-all multiclass support vector machine, and the performance is evaluated using accuracy. The study results show that the Gaussian kernel has the best accuracy performance compared to other support vector machines kernels in classifying genome-wide association studies data of autism, bipolar, and schizophrenia as early diagnosis.

Note: This article has supplementary file(s).

Keywords: Autism; Bipolar; Classification; Schizophrenia; Support Vector Machine

Article Metrics:

  1. Affymetrix, T., 2006. What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567. https://www.researchgate.net/publication/6639744_What_is_a_Support_Vector_Machine
  2. Almandil, N., Alkuroud, D., AbdulAzeez, S., AlSulaiman, A., Elaissari, A., & Borgio, J., 2019. Environmental and genetic factors in autism spectrum disorders. Environmental Research and Public Health, 16(4), 1–16. https://doi.org/10.3390/ijerph16040658
  3. Aprilia, D., Johar, A., & Hartuti, P., 2014. Sistem Pakar diagnosa autisme pada anak. Jurnal Rekursif, 93–98. https://ejournal.unib.ac.id/index.php/rekursif/article/download/310/269
  4. Awad, M., & Khanna, R., 2015. Efficient learning machines: Theories, concepts, and applications for engineers and system designers. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers (1st ed.). Apress. https://doi.org/10.1007/978-1-4302-5990-9
  5. Bush, W.S., & Moore, J.H., 2012. Genome-wide association studies. PLoS Computational Biology, 8(12), 1–12. https://doi.org/10.1371/journal.pcbi.1002822
  6. Carroll, L.S., & Owen, M.J., 2009. Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Medicine, 1(10). https://doi.org/10.1186/gm102
  7. Choresyo, B., Nulhaqim, S.A., & Wibowo, H., 2015. Kesadaran masyarakat terhadap penyakit mental. Prosiding Penelitian dan Pengabdian Kepada Masyarakat, 2(3), 301–444. https://doi.org/10.24198/jppm.v2i3.13587
  8. Evgeniou, T., & Pontil, M., 2001. Support vector machines: theory and applications. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2049 LNAI, 249–257. https://doi.org/10.1007/3-540-44673-7_12
  9. Furqan, M., 2011. Face recognition using eigenfaces and smooth support vector machine [Universiti Malaysia Pahang]. http://umpir.ump.edu.my/id/eprint/2732/1/mhd_furqan.pdf
  10. Geschwind, D.H., Gandal, M.J., Zhang, P., Hadjimichael, E., Walker, R.L., Chen, C., Liu, S., Won, H., Van Bakel, H., Varghese, M., Wang, Y., Shieh, A.W., Haney, J., Parhami, S., Belmont, J., Kim, M., Losada, P. M., Khan, Z., Mleczko, J., Pinto, D., 2018. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 362(6420). https://doi.org/10.1126/science.aat8127
  11. Grove, J., Ripke, S., & Als, T.D., 2019. Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51(3), 431–444. https://doi.org/10.1038/s41588-019-0344-8
  12. Hyman, S., Chisholm, D., Kessler, R., Patel, V., & Whiteford, H., 2006. Mental Disorders. Disease Control Priorities in Developing Countrikes, 31, 605–625
  13. Hyman, S.E., 2000. The genetics of mental illness implications for practice. Bulletin of the World Health Organization, 78(4), 455–463. https://doi.org/10.1590/S0042-96862000000400007
  14. Kementerian Kesehatan Republik Indonesia, 2018. Laporan Riset Kesehatan Dasar. Kementerian Kesehatan RI
  15. Maciukiewicz, M., Geraci, J., Rotzinger, S., Foster, J. A., Kennedy, J.L., & Muller, D.J., 2017. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. European Neuropsycho pharmacology. Conference: 23rd World Congress of Psychiatric Genetics, WCPG. Canada, 27(Supplement 2), S285‐S286. https://doi.org/10.1016/j.euroneuro.2015.09.010
  16. Mattes, J.A., 2010. Bipolar disorder. Archives of General Psychiatry, 67(11), 1198. https://doi.org/10.1001/archgenpsychiatry.2010.143
  17. National Institute of Mental Health, 2018. Bipolar Disorder. National Institutes of Health Publication
  18. Novianty, A., & Rochman Hadjam, M.N., 2017. Literasi Kesehatan Mental dan Sikap Komunitas sebagai Prediktor Pencarian Pertolongan Formal. Jurnal Psikologi, 44(1), 50. https://doi.org/10.22146/jpsi.22988
  19. Psychiatric Genomics Consortium, 2019. What is the PGC? https://www.med.unc.edu/pgc/
  20. Purcell, S.M, Wray, N.R., Stone, J.L., Visscher, P.M., O’Donovan, M.C., Sullivan, P.F. & Sklar P.. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748–752. https://www.researchgate.net/publication/232772602_Common_polygenic_variation_contributes_to_risk_of_schizophrenia_and_bipolar_disorder
  21. Reig, R.B., 2013. Bipolar disorder. FMC Formacion Medica Continuada En Atencion Primaria, 20(10), 565–572. https://doi.org/10.1016/ S1134-2072(13)70667-4
  22. Rietveld, C., Medland, S., Derringer, J., Yang, J., Esko, Y., Martin, N., Westra, H., Shakhbazov, K& Abdellaoui, A., 2013. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340(6139), 1467–1471. https://doi.org/10.1126/science.1235488
  23. Vapnik, V., 1998. Statistical Learning Theory. Wiley
  24. Walker, J., 2013. Methods in molecular biology. In Research in Microbiology (Vol. 149, Issue 5). Springer Science Media. https://doi.org/10.1016/s0923-2508(98)80442-7
  25. Weston, J.& Ben-Hur, A., 2010. A User’s Guide to Support Vector Machine. Data Mining Techniques for the Life Sciences, 609, 223–239. https://doi.org/10.1007/978-1-60327-241-4_13
  26. World Health Organization, 2013. Mental Health Action Plan 2013-2020. World Health Organization

Last update: 2021-05-08 18:26:48

No citation recorded.

Last update: 2021-05-08 18:26:48

No citation recorded.