BibTex Citation Data :
@article{JSINBIS46630, author = {Aris Marjuni}, title = {Peramalan Harga Saham Serentak Menggunakan Model Multivariate Singular Spectrum Analysis}, journal = {JSINBIS (Jurnal Sistem Informasi Bisnis)}, volume = {12}, number = {1}, year = {2022}, keywords = {Stock Price Forecasting; Multivariate Model; Singular Spectrum Analysis; Non-Parametric Approach}, abstract = { Stock price fluctuations in the stock market are widely influenced by financial environment changes in both micro and macro that are usually unpredictable and can not be controlled by stock players. On the other side, stock price information is very essential and much needed for both buyers and traders. Stock price forecasting is one of the analytical techniques to obtain stock price prediction based on the previous historical stock prices. The open and close prices are important information in stock trading. The opening price can influence the movement towards the closing price, and the closing price becomes important for the next day's opening price. In technical analysis, the relationship between the two stock prices can be parametric or non-parametric. This study discusses the stock price prediction or forecasting through the non-parametric approach using a multivariate singular spectrum analysis method with the consideration that open and close prices are simultaneously working in the same system and time. Performance evaluation using Mean Absolute Percentage Error shows that the multivariate singular spectrum analysis method can produce predicted open and close prices with an error rate of 3.18% and 3.21%, respectively. Hence, this method can be used as an alternative for stock price forecasting simultaneously. }, issn = {2502-2377}, pages = {17--25} doi = {10.21456/vol12iss1pp17-25}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/46630} }
Refworks Citation Data :
Stock price fluctuations in the stock market are widely influenced by financial environment changes in both micro and macro that are usually unpredictable and can not be controlled by stock players. On the other side, stock price information is very essential and much needed for both buyers and traders. Stock price forecasting is one of the analytical techniques to obtain stock price prediction based on the previous historical stock prices. The open and close prices are important information in stock trading. The opening price can influence the movement towards the closing price, and the closing price becomes important for the next day's opening price. In technical analysis, the relationship between the two stock prices can be parametric or non-parametric. This study discusses the stock price prediction or forecasting through the non-parametric approach using a multivariate singular spectrum analysis method with the consideration that open and close prices are simultaneously working in the same system and time. Performance evaluation using Mean Absolute Percentage Error shows that the multivariate singular spectrum analysis method can produce predicted open and close prices with an error rate of 3.18% and 3.21%, respectively. Hence, this method can be used as an alternative for stock price forecasting simultaneously.
Article Metrics:
Last update:
Penulis yang mengirimkan naskah harus memahami dan menyetujui bahwa jika diterima untuk dipublikasikan, hak cipta dari artikel adalah milik JSINBIS dan Universitas Diponegoro sebagai penerbit jurnal.Hak cipta (copyright) meliputi hak eksklusif untuk mereproduksi dan memberikan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm dan setiap reproduksi lain yang sejenis, serta terjemahan. Penulis mempunyai hak untuk hal-hal berikut:
JSINBIS dan Universitas Diponegoro serta Editor melakukan segala upaya untuk memastikan bahwa tidak ada data, pendapat atau pernyataan yang salah atau menyesatkan yang dipublikasikan di jurnal ini. Isi artikel yang diterbitkan di JSINBIS adalah tanggung jawab tunggal dan eksklusif dari masing-masing penulis.
View My Stats This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.