skip to main content

Implementasi Algoritma Fuzzy C-Means dalam Mengelompokkan Produktivitas Nauplius Vanammei di BBPBAP Jepara

*Nur Aeni Widiastuti  -  Universitas Islam Nahdlatul Ulama Jepara, Indonesia
Raden Hadapiningradja Kusumodestoni  -  Universitas Islam Nahdlatul Ulama Jepara, Indonesia
Buang Budi Wahono  -  Universitas Islam Nahdlatul Ulama Jepara, Indonesia
Diah Ayu Chumaisaroh  -  Universitas Islam Nahdlatul Ulama Jepara, Indonesia
Open Access Copyright (c) 2023 JSINBIS (Jurnal Sistem Informasi Bisnis)

Citation Format:
Abstract

Balai Besar Perikanan Budidaya Air Payau often experiences changes in the number of vanammei shrimp production that is uncertain every day. This resulted in the scarcity of vanammei shrimp larvae seeds, unmet market demand and high selling prices. So that the BBPBAP experienced problems in monitoring the quality of the production of vanammei shrimp larvae. To overcome these problems, data mining is used as an alternative solution. The research method used is the Fuzzy C-Means algorithm. With the research stages starting from data collection, pre-processing data to clean data or attributes that are not suitable, clustering using the Fuzzy C-Means algorithm, testing using the MATLAB tool, and evaluating validation using the Davies Bouldin Index (DBI). Based on the results of the clustering that has been carried out from a total of 894 data, which are included in the good cluster, 569 data with the unfavorable category is 325. The results of the evaluation and validation obtained a value of 0.32 with the resulting cluster quality is optimum.

Fulltext View|Download
Keywords: Clustering; Data Mining; Data Science; Davies Bouldin Index; Fuzzy C-Means.

Article Metrics:

  1. Adiwidjaya, D., Supito., 2020. Konsep budidaya tambak berkelanjutan, KKP.go.id. https://kkp.go.id/djpb/bbpbapjepara/artikel/10624-konsep-budidaya-tambak-berkelanjutan
  2. Afifah, N., Rini, D. C., Lubab, A., 2016 Pengklasteran lahan sawah di indonesia sebagai evaluasi ketersediaan produksi pangan menggunakan Fuzzy C-Means, Jurnal Matematika ‘MANTIK’ 2(1), 40
  3. Davies, D., Bouldin, D., 1979. A cluster separation measure’, ieee transactions on pattern analysis and machine intelligence, PAMI 1(2), 224–227
  4. Desrianti, R., Wijaya, H. D., 2020. Implementasi algoritma c-means pada aplikasi seleksi karyawan digital talent di PT telekomunikasi Indonesia’, Jurnal Media … 4, 879–888
  5. Ghosh, S., Kumar, S., 2013. Comparative Analysis of K-Means and Fuzzy C-Means Algorithms. International Journal of Advanced Computer Science and Applications 4(4). https://doi.org/10.14569/ijacsa.2013.040406
  6. Hablum, J.R., Khairan, A., Rosihan., 2019. Clustering hasil tangkap ikan di pelabuhan perikanan nusantara (PPN) Ternate menggunakan algoritma k-means. Informatika dan Komputer 2(1), 26–36
  7. Kusumadewi, S., Hartati S., Harjoko S., W. R., 2006. Fuzzy multi-attribute decision making. Penerbit Graha Ilmu, Yogyakarta, Indonesia, 361
  8. Kusumadewi, S., Purnomo, H., 2010. Aplikasi logika fuzzy untuk pendukung keputusan. Penerbit Graha Ilmu, Vol. 1. Yogyakarta, Indonesia, 452
  9. Poerwanto, B., Ali, B., 2019. Implementasi algoritma fuzzy c-means dalam mengelompokkan kecamatan di tana luwu berdasarkan produktifitas hasil perkebunan. MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer 19(1), 163–172
  10. Priambodo, S. A., Falani, A. Z., 2020. Pemanfaatan data mining untuk klasterisasi potensi produksi beras di kabupaten blitar dengan menggunakan metode fuzzy c-means 12(2)
  11. Rachman, F., Yuniati, R. A. N., 2017. Analisis cluster sektor perikanan laut dengan menggunakan fuzzy c-means. Seminar MASTER 2017 PPNS 2(1), 7–10
  12. Raval, U. R., Jani, C., 2016. Implementing and improvisation of k-means clustering algorithm. International Journal of Computer Science and Mobile Computing 55(5), 191–203
  13. Rizki, M. Y., Fania, F., Windarto, A. P., 2020. Implementasi k-means clustering dalam mengelompokkan jumlah penjualan ikan laut di tpi menurut wilayah. Informatika Dan Komputer 3(2), 69–74. https://doi.org/10.33387/jiko
  14. Sharma, K., Gulati, R., Sharma, P., 2022. Shrimp culture (Litopenaeus vannamei) and its management. 7, 62–76
  15. Sismadi., Kusnadi, Y., 2018. Prediksi tingkat kelulusan siswa elearning berbasis algoritma fuzzy c-means. Jurnal TECHNO Nusa Mandiri 15(1), 1–6
  16. Widiastuti, N. A., 2022. Evaluasi kinerja algoritma k-means dengan matriks jarak euclidean pada penentuan siswa bermasalah. Jurnal SIMETRIS 13

Last update:

No citation recorded.

Last update: 2024-11-24 07:14:52

No citation recorded.