BibTex Citation Data :
@article{JSINBIS52428, author = {Moh Erkamim and Suswadi Suswadi and Muhammad Subarkah and Erni Widarti}, title = {Komparasi Algoritme Random Forest dan XGBoosting dalam Klasifikasi Performa UMKM}, journal = {Jurnal Sistem Informasi Bisnis}, volume = {13}, number = {2}, year = {2023}, keywords = {Klasifikasi; Algoritma; Random Forest; XGBoosting; UMKM; Keuangan}, abstract = {The Covid-19 pandemic has greatly impacted the whole world, especially Indonesia. Various policies have been implemented starting from the implementation of lockdowns, restrictions on large-scale economic activities, and bans from leaving the region. The economic sector is a sector that has been affected quite a lot, one of which is Micro, Small, and Medium Enterprises (MSMEs). As a result of the Covid-19 pandemic, many MSMEs have suffered losses, so many investors have started to consider investing in MSMEs. Therefore, MSMEs need to know their business performance through potential analysis and financial reports to deal with the economic crisis during a pandemic. This study compares two algorithms namely Random Forest and XGBoosting in classifying the good or bad performance of MSME financial conditions. The performance of the developed algorithm will be improved using hyperparameter tuning to obtain the best parameter combination for each algorithm. In this study, the Random Forest algorithm has an accuracy value of 0.944 and an f1-score of 0.944, while the XGBoosting algorithm has an accuracy value of 0.944 and an f1-score of 0.950. Based on the model with the best evaluation metric, six important features are obtained: the 2021 profit and loss variable, 2020 cash, 2020 liabilities, 2020 capital, 2021 sales, and 2021 liabilities.}, issn = {2502-2377}, pages = {127--134} doi = {10.21456/vol13iss2pp127-134}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/52428} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2024-11-19 23:51:14
Authors who submit the manuscripts to Journal JSINBIS must understand and agree that if the manuscript is accepted for publication, the copyright of the article belongs to JSINBIS and Diponegoro University as the journal publisher.
Copyright includes the exclusive right to reproduce and provide articles in all forms and media, including reprints, photographs, microfilm and any other similar reproductions, as well as translations. The author reserves the rights to the following:
JSINBIS and Diponegoro University and the Editors make every effort to ensure that no false or misleading data, opinions or statements are published in this journal. The content of articles published in JSINBIS is the sole and exclusive responsibility of the respective authors.
Copyright transfer agreement can be found here: [Copyright transfer agreement in doc] and [Copyright transfer agreement in pdf].
JSINBIS (Jurnal Sistem Informasi Bisnis) is published by the Magister of Information Systems, Post Graduate School Diponegoro University. It has e-ISSN: 2502-2377 dan p-ISSN: 2088-3587 . This is a National Journal accredited SINTA 2 by RISTEK DIKTI No. 48a/KPT/2017.
Journal JSINBIS which can be accessed online by http://ejournal.undip.ac.id/index.php/jsinbis is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats