skip to main content

Analisis Sentimen Komentar Konsumen Industri Jamu di Media Sosial menggunakan Artificial Neural Network dan K-Nearest Neighbor

*Daniel Kurniawan  -  Universitas Kristen Satya Wacana, Indonesia
Hindriyanto Dwi Purnomo  -  Universitas Kristen Satya Wacana, Indonesia
Ade Iriani  -  Universitas Kristen Satya Wacana, Indonesia
Open Access Copyright (c) 2024 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract
Phytopharmaceutical plants have become one of the main commodities contributing significantly to the economy through their use in the pharmaceutical, cosmetic, and health industries. However, behind this economic potential, traditional herbal medicine businesses often face challenges, particularly in promotion and brand identity. Social media platforms like Instagram have now introduced unique features to support business and marketing, primarily by providing in-depth information about herbal products and offering opportunities for businesses to receive feedback from consumers. Comments on social media are valuable but often unstructured; hence, sentiment analysis is necessary to organize and categorize this data. By combining comment data with information from Google Trends, cause-and-effect relationships from comments during specific periods can be identified using path analysis. This research aims to analyze consumer comments on the Sidomuncul company's Instagram platform, with the hope of benefiting the company and advancing herbal medicine products. The methods used in this study include Artificial Neural Network (ANN) and K-nearest neighbor (KNN) to classify comments into positive, negative, and neutral categories. Both methods show satisfactory results in classification, with an average accuracy of 0.887 for ANN and 0.874 for KNN. However, the ROC curve for the KNN model indicates a relatively low AUC value in classifying negative comments, at 0.598.
Fulltext View|Download
Keywords: Sentiment Analysis; Artificial Neural Network; KNN; Path Analysis; Herbal Medicine Products

Article Metrics:

  1. Adi, L.T., Shaluhiyah, Z., Widjanarko, B., 2023. Pemberdayaan Komunitas Herbal Medicine Class di Tangerang Selatan dalam Meningkatkan Kesehatan Keluarga. Perilaku Dan Promosi Kesehatan: Indonesian Journal of Health Promotion and Behavior, 5(1), 53-61. https://doi.org/10.47034/ppk.v5i1.6849
  2. Afrinanda, R., Efrizoni, L., Agustin, W., Rahmiati, 2023. Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm. MATRIK: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(2), 309-324. https://doi.org/10.30812/matrik.v22i2.2640
  3. Al Saed, R., Upadhya, A., Saleh, M.A., 2020. Role of Airline Promotion Activities in Destination Branding: Case of Dubai vis-à-vis Emirates Airline. European Research on Management and Business Economics, 26(3), 121–126. https://doi.org/10.1016/j.iedeen.2020.07.001
  4. Alamoodi, A.H., Zaidan, B.B., Zaidan, A.A., Albahri, O.S., Mohammed, K.I., Malik, R.Q., Almahdi, E.M., Chyad, M.A., Tareq, Z., Albahri, A.S., Hameed, H., Alaa, M., 2021. Sentiment Analysis and its Applications in Fighting COVID-19 and Infectious Diseases: A Systematic Review. Expert Systems with Applications, 167, 114155. https://doi.org/10.1016/j.eswa.2020.114155
  5. Amalia, F. A., Aprianingsih, A., 2017. Business Model of Jamu as Indonesian Traditional Herbal Medicine in New Economy. Asian Journal of Technology Management, 10(1), 19-29. https://doi.org/10.12695/ajtm.2017.10.1.3
  6. Amir, A., Rantesigi, N., Agusrianto, A., 2022. Seduhan Bawang Putih Terhadap Penurunan Tekanan Darah pada Pasien Hipertensi: A Literature Review. Poltekita: Jurnal Ilmu Kesehatan, 16(1), 113-117. https://doi.org/10.33860/jik.v16i1.685
  7. Anam, M.K., Pikir, B.N., Firdaus, M.B., Erlinda, S., Agustin., 2021. Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 21(1), 139-150. https://doi.org/https://doi.org/10.30812/matrik.v21i1.1092
  8. Arinah, H., Andayani, W., Purwanto, R.H., 2021. Analisis Finansial Hutan Rakyat Pola Agroforestri Herbal di Desa Gerbosari Kabupaten Kulon Progo. Jurnal Ilmu Kehutanan, 15(2), 137-146
  9. Bansal, M., Goyal, A., Choudhary, A., 2022. A Comparative Analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in Machine Learning. Decision Analytics Journal, 3, 100071. https://doi.org/10.1016/j.dajour.2022.100071
  10. Bulczak, G.M., 2021. Use of Google Trends to Predict the Real Estate Market: Evidence from the United Kingdom. International Real Estate Review, 24(4), 613-631. https://doi.org/10.53383/100332
  11. Cervellin, G., Comelli, I., Lippi, G., 2017. Is Google Trends a Reliable Tool for Digital Epidemiology? Insights from Different Clinical Settings. Journal of Epidemiology and Global Health, 7(3), 185–189. https://doi.org/10.1016/j.jegh.2017.06.001
  12. Faesal, A., Muslim, A., Ruger, A.H., Kusrini, 2020. Sentimen Analisis pada Data Tweet Pengguna Twitter Terhadap Produk Penjualan Toko Online Menggunakan Metode K-Means. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 19(2), 207-213. https://doi.org/https://doi.org/10.30812/matrik.v19i2.640
  13. Gardner, M.W., Dorling, S.R., 1998. Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0
  14. Hameed, R.A., Abed, W.J., Sadiq, A.T., 2023. Evaluation of Hotel Performance with Sentiment Analysis by Deep Learning Techniques. International Journal of Interactive Mobile Technologies (IJIM), 17(9), 70-87. https://doi.org/10.3991/ijim.v17i09.38755
  15. Herzallah, D., Muñoz-Leiva, F., Liebana-Cabanillas, F., 2022. Drivers of Purchase Intention in Instagram Commerce. Spanish Journal of Marketing-ESIC, 26(3), 168-188. http://dx.doi.org/10.1108/SJME-03-2022-0043
  16. Hidayat, E.Y., Hardiansyah, R.W., Affandy, 2021. Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network. Jurnal Nasional Teknologi dan Sistem Informasi, 7(2), 108-118. https://doi.org/10.25077/TEKNOSI.v7i2.2021.108-118
  17. Hozairi, Anwari, Alim, S., 2021. Implementasi Orange Data Mining untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes. Network Engineering Research Operation, 6(2), 133-144. https://doi.org/10.21107/nero.v6i2.237
  18. Iddrisu, A.M., Mensah, S., Boafo, F., Yeluripati, G.R., Kudjo, P., 2023. A sentiment analysis framework to classify instances of sarcastic sentiments within the aviation sector. International Journal of Information Management Data Insights, 3(2), 100180. https://doi.org/10.1016/j.jjimei.2023.100180
  19. Jollineau, S.J., Bowen, R.M., 2023. A Practical Guide to using Path Analysis: Mediation and Moderation in Accounting Research. Journal of Financial Reporting, 8(1), 11-40. https://doi.org/10.2308/jfr-2021-004
  20. Kurniawan, D., Saputra, A., Penerapan K-Nearest Neighbour dalam Penerimaan Peserta Didik dengan Sistem Zonasi. Jurnal Sistem Informasi Bisnis, 9(2), 212-219. https://doi.org/10.21456/vol9iss2pp212-219
  21. Liu, H., 2022. Optimal Selection of Control Parameters for Automatic Machining Based on BP Neural Network. Energy Reports, 8, 7016–7024. https://doi.org/https://doi.org/10.1016/j.egyr.2022.05.038
  22. Lorinda, I.P., Amron, 2023. Pengaruh Kualitas Produk, Iklan dan Citra Merek terhadap Keputusan Pembelian Produk Tolak Angin Sidomuncul di Kota Semarang. MBIA, 22(1), 53-64. https://doi.org/10.33557/mbia.v22i1.2238
  23. Lu, H., Setiono, R., Liu, H., 1996. Effective Data Mining using Neural Networks. IEEE Transactions on Knowledge and Data Engineering, 8(6), 957–961. https://doi.org/10.1109/69.553163
  24. Maqbool, A., Sheikh, N.A., 2022. Impact of Financial Decisions on Firm Performance: Path Analysis Approach. South Asian Journal of Management Sciences, 16(1), 116–125
  25. Mavragani, A., Ochoa, G., 2019. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health and Surveillance, 5(2), 1-15. https://doi.org/10.2196/13439
  26. Morama, H.C., Ratnawati, D.E., Arwani, I., 2022. Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(4), 1702-1708
  27. Mufidah, F.S., Winarno, S., Alzami, F., Udayanti, E.D., Sani, R.R., 2022. Analisis Sentimen Masyarakat Terhadap Layanan Shopeefood Melalui Media Sosial Twitter dengan Algoritma Naïve Bayes Classifier. Journal of Information System, 7(1), 14-25. https://doi.org/10.33633/joins.v7i1.5883
  28. Muhammad, F., Hartono, S., 2021. Marketplace Analysis of Purchase Decision Factors for Instagram Social Media Users. Journal of Intelligence Studies in Business, 11(3), 42-56
  29. Mustofa, F.I., Baiquni, F., Triyono, A., Wijayanti, E., Wahyono, S., 2022. Pengetahuan, Sikap dan Praktik Masyarakat dalam Penggunaan Jamu untuk Meningkatkan Daya Tahan Tubuh Selama Pandemi Covid-19 di Indonesia. Jurnal Tumbuhan Obat Indonesia, 15(1), 57-68. https://doi.org/10.22435/jtoi.v15i1.6034
  30. Muttaqien, D.D., Tibyani, Hartono, P.P., 2022. Implementasi Support Vector Machine pada Analisis Sentimen mengenai Bantuan Sosial di Era Pandemi Covid-19 pada Pengguna Twitter. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(1), 163-171
  31. Nawiyanto., 2016. Modernizing Traditional Medicines in Java: Regulations, Production and Distribution Network. Paramita: Historical Studies Journal, 26(2), 119-133. https://doi.org/10.15294/paramita.v26i2.7175
  32. Nisa, U., Astana, P.R.W., Jannah, W.D.M., Triyono, A., Ardiyanto, D., Zulkarnain, Z., Fitriani, U., Novianto, F., 2021. Kualitas Hidup Pasien Batu Saluran Kemih Yang Menggunakan Ramuan Jamu Di Klinik Jejaring Saintifikasi Jamu. Jurnal Tumbuhan Obat Indonesia, 14(1), 87-98. https://doi.org/10.22435/jtoi.v14i1.4365
  33. Nurwijayanto, A., Na’iem, M., Syahbudin, A., Wahyuono, S., 2020. Eksplorasi Potensi Antioksidan Tumbuhan Obat dari Taman Nasional Gunung Merapi Yogyakarta. Jurnal Tumbuhan Obat Indonesia, 13(1), 25-31
  34. Nuzuliyah, L., 2018. Analisis Nilai Tambah Produk Olahan Tanaman Rimpang (Added Value Analysis of Rhizome Product). Jurnal Teknologi Dan Manajemen Agroindustri, 7(1), 31-38. https://doi.org/10.21776/ub.industria.2018.007.01.4
  35. Occhipinti, A., Rogers, L., Angione, C., 2022. A pipeline and comparative study of 12 machine learning models for text classification. Expert Systems with Applications, 201, 117193. https://doi.org/10.1016/j.eswa.2022.117193
  36. Onita, D., 2023. Active Learning Based on Transfer Learning Techniques for Text Classification. IEEE Access, 11, 28751–28761. https://doi.org/10.1109/ACCESS.2023.3260771
  37. Padurariu, C., Breaban, M.E., 2019. Dealing with Data Imbalance in Text Classification. Procedia Computer Science, 159, 736-745. https://doi.org/10.1016/j.procs.2019.09.229
  38. Parasati, W., Bachtiar, F.A., Setiawan, N.Y., 2020. Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naive Bayes Classifier. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(4), 1090–1099
  39. Prabawa, H.W., Fitriani, A.D., 2020. Mempertahankan Eksistensi Jamu Tradisional melalui Perubahan Desain Pengemasan dan Pemasaran. DEDIKASI: Community Service Reports, 2(1), 35–46. https://doi.org/10.20961/dedikasi.v2i1.35848
  40. Pranaka, R.N., Yusro, F., Budiastutik, I., 2020. Pemanfaatan Tanaman Obat oleh Masyarakat Suku Melayu di Kabupaten Sambas. Jurnal Tumbuhan Obat Indonesia, 13(1), 1–24. https://doi.org/10.22435/jtoi.v13i1.1887
  41. Pratiwi, P.G., Putra, I.K.G.D, Putri, D.P.S., 2019. Peramalan Jumlah Tersangka Penyalahgunaan Narkoba Menggunakan Metode Multilayer Perceptron. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 7(2) 143-150. https://doi.org/10.24843/JIM.2019.v07.i02.p06
  42. Qaiser, S., Ali, R., 2018. Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications, 181(1), 25-29. https://doi.org/10.5120/ijca2018917395
  43. Ramadhani, N., Fajarianto, N., 2020. Sistem Informasi Evaluasi Perkuliahan dengan Sentimen Analisis Menggunakan Naïve Bayes dan Smoothing Laplace. Jurnal Sistem Informasi Bisnis, 10(2), 228-234. https://doi.org/10.21456/vol10iss2pp228-234
  44. Rustam, F., Mehmood, A., Ahmad, M., Ullah, S., Khan, D.M., Choi, G.S., 2020. Classification of Shopify App User Reviews Using Novel Multi Text Features. IEEE Access, 8, 30234-30244. https://doi.org/10.1109/ACCESS.2020.2972632
  45. Soedarsono, D.K., Mohamad, B., Adamu, A.A., Pradita, K.A., 2020. Managing Digital Marketing Communication of Coffee Shop Using Instagram. International Journal of Interactive Mobile Technologies (iJIM), 14(5), 108-118. https://doi.org/10.3991/ijim.v14i05.13351
  46. Sun, X., Opulencia, M.J.C., Alexandrovich, T.P., Khan, A., Algarni, M., Abdelrahman, A., 2022. Modeling and Optimization of Vegetable Oil Biodiesel Production with Heterogeneous Nano Catalytic Process: Multi-Layer Perceptron, Decision Regression Tree, and K-Nearest Neighbor Methods. Environmental Technology and Innovation, 27, 102794. https://doi.org/10.1016/j.eti.2022.102794
  47. Sunardi, Yudhana, A., Muflih, G.Z., Sistem Prediksi Curah Hujan Bulanan Menggunakan Jaringan Saraf Tiruan Backpropagation. Jurnal Sistem Informasi Bisnis, 10(2), 155-162. https://doi.org/10.21456/vol10iss2pp155-162
  48. Siregar, R.S., Hadiguna, R.A., Kamil, I., Nazir, N., 2020. Permintaan dan Penawaran Tanaman Obat Tradisional di Provinsi Sumatera Utara. Jurnal Tumbuhan Obat Indonesia, 13(1), 50-60
  49. Tuten, T., Perotti, V., 2019. Lies, Brands and Social Media. Qualitative Market Research: An International Journal, 22(1), 5-13. http://dx.doi.org/10.1108/QMR-02-2017-0063
  50. Tüzemen, S., Barış-Tüzemen, Ö., Çelik, A.K., 2023. Sentiment Analysis and Machine Learning Classification of COVID-19 Vaccine Tweets: Vaccination in the Shadow of Fear-Trust Dilemma. Informatica, 47(1), 73-82. https://doi.org/10.31449/inf.v47i1.4055
  51. Utaminingrum, W., Nofrianti, Hartanti, D., 2020. Ethnomedicinal Survey of Traditional Antidiabetic Plants in Baturraden and Sumbang. Medisains, 18(2), 43-51. http://dx.doi.org/10.30595/medisains.v18i2.7169
  52. Wei, X., Zou, N., Zeng, L., Pei, Z., 2022. PolyJet 3D printing: Predicting color by multilayer perceptron neural network. Annals of 3D Printed Medicine, 5, 100049. https://doi.org/https://doi.org/10.1016/j.stlm.2022.100049
  53. Wibowo, A., Diniawati, E., Sein, T.T., 2019. Analysis of Traditional Health Care in Three Primary Health Care in West Java Province, Indonesia, 2018. Kesmas, 14(1), 43-50. https://doi.org/10.21109/kesmas.v14i1.2700
  54. Wu, D., Xu, Z., Bach, S., 2019. Predicting and Forecasting Avocado Sales using Google Trends. Journal of Marketing Analytics, 11(4), 629-641
  55. Zahara, S., Sugianto, 2021. Prediksi Indeks Harga Konsumen Komoditas Makanan Berbasis Cloud Computing Menggunakan Multilayer Perceptron. JOINTECS (Journal of Information Technology and Computer Science), 6(1), 21-28. https://doi.org/10.31328/jointecs.v6i1.1702
  56. Zhao, B., 2017. Web Scraping. Schintler, L., McNeely, C. (eds) Encyclopedia of Big Data. Springer, Cham, 1-3. https://doi.org/10.1007/978-3-319-32001-4_483-1

Last update:

No citation recorded.

Last update: 2025-01-14 21:11:29

No citation recorded.