skip to main content

Prediksi Churn Pelanggan Telekomunikasi dengan Optimalisasi Seleksi Fitur dan Tuning Hyperparameter pada Algoritma Klasifikasi C4.5

*Soterio Antoh  -  Universitas Lambung Mangkurat, Indonesia
Rudy Herteno  -  Universitas Lambung Mangkurat, Indonesia
Irwan Budiman  -  Universitas Lambung Mangkurat, Indonesia
Dwi Kartini  -  Universitas Lambung Mangkurat, Indonesia
Muhammad Itqan Mazdadi  -  Universitas Lambung Mangkurat, Indonesia
Open Access Copyright (c) 2025 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract

In the telecommunications industry, predicting customer churn is crucial for maintaining business sustainability. High churn rates can negatively impact profitability, necessitating effective retention strategies. This research aims to enhance the accuracy of telecommunications customer churn prediction by optimizing the C4.5 classification algorithm through feature selection and hyperparameter tuning. The methods used include Information Gain for feature selection and hyperparameter tuning with Random Search and Grid Search. This study utilizes the Telco Customer Churn dataset from Kaggle, split into an 80:20 ratio for training and testing data. Six approaches are applied: (1) the basic C4.5 algorithm, (2) C4.5 with Information Gain, (3) C4.5 with Random Search, (4) C4.5 with Grid Search, (5) C4.5 with a combination of Information Gain and Random Search, and (6) C4.5 with a combination of Information Gain and Grid Search. The results indicate that the C4.5 algorithm alone achieves an accuracy of 74.09%, while applying Information Gain increases accuracy to 78.42%. Hyperparameter tuning with Random Search achieves the highest accuracy of 80.05%, whereas Grid Search reaches 77.71%. Combining Information Gain with Random Search results in an accuracy of 78.99%, while combining Information Gain with Grid Search yields an accuracy of 78.85%. These findings suggest that hyperparameter tuning using Random Search significantly improves accuracy compared to other methods, while Information Gain feature selection does not have a significant impact on performance in this context.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Telco Customer Churn
Subject
Type Research Instrument
  Download (776KB)    Indexing metadata
Keywords: Classification; C4.5 Algorithm; Customer Churn; Hyperparameters; Feature Selection

Article Metrics:

  1. Akbar, M. N. (2021). Klasifikasi Bibliografi Otomatis Menggunakan C4.5 Dan Information Gain. Jurnal Instek (Informatika Sains Dan Teknologi), 6(1). https://doi.org/10.24252/instek.v6i1.18636
  2. Amin, A., Al-Obeidat, F., Shah, B., Adnan, A., Loo, J., & Anwar, S. (2019). Customer Churn Prediction In Telecommunication Industry Under Uncertain Situation. Journal Of Business Research, 94
  3. Anita, Wicaksono, A., & Padilah, T. N. (2021). Pengaruh Jumlah Record Dataset Terhadap Algoritma Klasifikasi Berdasarkan Data Customer Churn. Jurnal Ilmiah Informatika, 6(1). https://doi.org/10.1016/j.jbusres.2018.03.003
  4. Arden, F., & Safitri, C. (2022). Hyperparameter Tuning Algorithm Comparison With Machine Learning Algorithms. Proceeding - 6th International Conference On Information Technology, Information Systems And Electrical Engineering: Applying Data Sciences And Artificial Intelligence Technologies For Environmental Sustainability, Icitisee 2022. http://doi.org/10.1109/ICITISEE57756.2022.10057630
  5. Damanik, S. D., & Jambak, M. I. (2023). Klasifikasi Customer Churn Pada Telekomunikasi Industri Untuk Retensi Pelanggan Menggunakan Algoritma C4.5. Klik: Kajian Ilmiah Informatika Dan Komputer, 3(6). https://doi.org/10.30865/klik.v3i6.829
  6. Fajri, M., & Primajaya, A. (2023). Komparasi Teknik Hyperparameter Optimization Pada Svm Untuk Permasalahan Klasifikasi Dengan Menggunakan Grid Search Dan Random Search. Journal Of Applied Informatics And Computing, 7(1)
  7. Febiani, N., Fauzan, Abd. C., & Huda, M. M. (2022). Implementasi Algoritma Decision Tree C4.5 Dengan Improvisasi Mean Dan Median Pada Dataset Numerik. Jurnal Teknik Informasi Dan Komputer (Tekinkom), 5(1). https://doi.org/10.37600/tekinkom.v5i1.435
  8. Ivan, J., & Prasetyo, S. Y. (2023). Heart Disease Prediction Using Ensemble Model And Hyperparameter Optimization. International Journal On Recent And Innovation Trends In Computing And Communication, 11, 290–295. http://doi.org/10.17762/ijritcc.v11i8s.7208
  9. Kubat, M. (2021). An Introduction To Machine Learning. In An Introduction To Machine Learning. http://doi.org/10.1007/978-3-319-63913-0
  10. Loukili, M., Messaoudi, F., & Ghazi, M. El. (2022). Supervised Learning Algorithms For Predicting Customer Churn With Hyperparameter Optimization. International Journal Of Advances In Soft Computing And Its Applications, 14(3). http://doi.org/10.15849/IJASCA.221128.04
  11. Nasrullah, A. H. (2021). Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris. Jurnal Ilmiah Ilmu Komputer, 7(2). https://doi.org/10.35329/jiik.v7i2.203
  12. Navon, D., & Bronstein, A. M. (2022). Random Search Hyper-Parameter Tuning: Expected Improvement Estimation And The Corresponding Lower Bound. http://doi.org/10.48550/arXiv.2208.08170
  13. Puneeth, B. R., Preethi Salian, K., Prathyakshini, Murthy, A., Salian, S., & Surabhi. (2022). Analysis Of Telecom Churn Using Machine Learning Techniques. International Conference On Artificial Intelligence And Data Engineering, Aide 2022. http://doi.org/10.1109/AIDE57180.2022.10060222
  14. Ramanda Hasibuan, M., & Marji. (2019). Pemilihan Fitur Dengan Information Gain Untuk Klasifikasi Penyakit Gagal Ginjal Menggunakan Metode Modified K-Nearest Neighbor (Mknn). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(11)
  15. Rawal, B., & Agarwal, R. (2019). Improving Accuracy Of Classification Based On C4.5 Decision Tree Algorithm Using Big Data Analytics. Advances In Intelligent Systems And Computing, 711. https://doi.org/10.1007/978-981-10-8055-5_19
  16. Reddy, G. S., & Chittineni, S. (2021). Entropy Based C4.5-Sho Algorithm With Information Gain Optimization In Data Mining. Peerj Computer Science, 7. https://doi.org/10.7717/peerj-cs.424
  17. Rizky, M. H., Faisal, M. R., Budiman, I., Kartini, D., & Abadi, F. (2024). Effect Of Hyperparameter Tuning Using Random Search On Tree-Based Classification Algorithm For Software Defect Prediction. Ijccs (Indonesian Journal Of Computing And Cybernetics Systems), 18(1), 95. https://doi.org/10.22146/ijccs.90437
  18. Sadiq, M. H., & Ahmed, N. S. (2019). Classifying And Predicting Students’ Performance Using Improved Decision Tree C4.5 In Higher Education Institutes. Journal Of Computer Science, 7(12). http://doi.org/10.3844/jcssp.2019.1291.1306
  19. Sana, J. K., Abedin, M. Z., Rahman, M. S., & Rahman, M. S. (2022). A Novel Customer Churn Prediction Model For The Telecommunication Industry Using Data Transformation Methods And Feature Selection. Plos One, 17(12 December). https://doi.org/10.1371/journal.pone.0278095
  20. Saputra, R. A., Wasiyanti, S., & Pribadi, D. (2021). Information Gain Pada Algoritma C4.5 Untuk Klasifikasi Penerimaan Bantuan Pangan Non Tunai (Bpnt). Indonesian Journal Of Business Intelligence (Ijubi), 4(1). http://doi.org/10.21927/ijubi.v4i1.1757
  21. Sari, R. P., Febriyanto, F., & Adi, A. C. (2023). Analysis Implementation Of The Ensemble Algorithm In Predicting Customer Churn In Telco Data: A Comparative Study. Informatica (Slovenia), 47(7). https://doi.org/10.31449/inf.v47i7.4797
  22. Utami, Yohana T., Shofiana, D. A., & Heningtyas, Y. (2020). Penerapan Algoritma C4.5 Untuk Prediksi Churn Rate Pengguna Jasa Telekomunikasi. Jurnal Komputasi, 8(2). http://doi.org/10.23960/komputasi.v8i2.2647
  23. Wardani, N. W., Dantes, G. R., & Indrawan, G. (2018). Prediksi Customer Churn Dengan Algoritma Decision Tree C4.5 Berdasarkan Segmentasi Pelanggan Untuk Mempertahankan Pelanggan Pada Perusahaan Retail. Jurnal Resistor (Rekayasa Sistem Komputer), 1(1). http://doi.org/10.31598/jurnalresistor.v1i1.219
  24. Yoga Siswa, T. A., Putra, G. M., & Prafanto, A. (2022). Seleksi Fitur Information Gain Dan Teknik Pruning Untuk Memperbaiki Akurasi Algoritma C4.5 Dalam Kasus Keterlambatan Biaya Kuliah. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 17(2). http://doi.org/10.30872/jim.v17i2.11794

Last update:

No citation recorded.

Last update: 2025-03-10 23:12:34

No citation recorded.