skip to main content

Analyzing the Adoption of Taxpayer Surveillance Innovations with the Diffusion of Innovations Model and UTAUT

*I Wayan Murlanda Wangsa orcid  -  Department of Accounting, Faculty of Economic and Business, Udayana University, Indonesia
Dodik Ariyanto orcid scopus  -  Department of Accounting, Faculty of Economic and Business, Udayana University, Indonesia
Ni Putu Sri Harta Mimba orcid scopus  -  Department of Accounting, Faculty of Economic and Business, Udayana University, Indonesia
Henny Triyana Hasibuan orcid  -  Department of Accounting, Faculty of Economic and Business, Udayana University, Indonesia
Open Access Copyright (c) 2025 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract

Taxpayer supervision at the Directorate General of Taxes (DGT) faces new regulations requiring comprehensive oversight. The existing core tax system is deemed inadequate, prompting account representative (AR) officers to seek alternatives. The innovation in the form of an end user computing (EUC) applications used in supervision procedure has proven beneficial despite the lack of official support. This study aims to investigate the innovation characteristics that influence innovation adoption within the AR of DGT, drawn from the diffusion of innovation theory (DOI) and combining it with moderating variables of the unified theory of acceptance and use of technology (UTAUT). The study involved 224 AR officers at the DGT Bali regional office, selected through convenience sampling. Hypothesis testing was conducted using the Partial Least Squares Structural Equation Modeling (PLS-SEM) method. The results indicate that the characteristics of observability, relative advantage, and compatibility significantly influence AR’s intention to adopt innovation, while complexity and trialability proved insignificant. Furthermore, age, gender, and experience did not significantly moderate the influence of innovation characteristics. In conclusion, this integrated model successfully examined the innovation characteristic factors that influence the adoption of EUC in supervision at DGT. The study has theoretical implications by providing empirical evidence from TDI characteristics combined with the UTAUT model. This study has limitations in collecting AR research sample data only in the Bali Regional Tax Office work unit and data collection at one point in time that is not continuous, so the data is only cross-sectional.

Fulltext View|Download
Keywords: Innovation Diffusion; UTAUT; Directorate General of Taxes; Public; EUC; PLS-SEM

Article Metrics:

  1. Al-Dhaen, F., Hou, J., Rana, N. P., & Weerakkody, V., 2021. Advancing the Understanding of the Role of Responsible AI in the Continued Use of IoMT in Healthcare. Information Systems Frontiers, 25(6), 2159–2178. https://doi.org/10.1007/s10796-021-1019-x
  2. Al-Rahmi, W. M., Yahaya, N., Aldraiweesh, A. A., Alamri, M. M., Aljarboa, N. A., Alturki, U., & Aljeraiwi, A. A., 2019. Integrating Technology Acceptance Model with Innovation Diffusion Theory: An Empirical Investigation on Students’ Intention to Use E-Learning Systems. IEEE Access, 7, 26797–26809. https://doi.org/10.1109/ACCESS.2019.2899368
  3. Almaiah, M. A., Alfaisal, R., Salloum, S. A., Hajjej, F., Shishakly, R., Lutfi, A., Alrawad, M., Al Mulhem, A., Alkhdour, T., & Al-Maroof, R.S., 2022. Measuring Institutions’ Adoption of Artificial Intelligence Applications in Online Learning Environments: Integrating the Innovation Diffusion Theory with Technology Adoption Rate. Electronics (Switzerland), 11(20), 1–19. https://doi.org/10.3390/electronics11203291
  4. Cabeza-Ramírez, L. J., Sánchez-Cañizares, S. M., & Fuentes-García, F. J., 2020. Motivations for the use of video game streaming platforms: The moderating effect of sex, age and self-perception of level as a player. International Journal of Environmental Research and Public Health, 17(19), 1–20. https://doi.org/10.3390/ijerph17197019
  5. Chang, H. H., Fu, C. S., & Jain, H. T., 2016. Modifying UTAUT and innovation diffusion theory to reveal online shopping behavior: Familiarity and perceived risk as mediators. Information Development, 32(5), 1757–1773. https://doi.org/10.1177/0266666915623317
  6. Chung, K., 2014. Gender, culture and determinants of behavioural intents to adopt mobile commerce among the Y Generation in transition economies : evidence from Y Generation in transition economies : evidence from Kazakhstan. Behaviour & Information Technology, 33(7), 37–41. https://doi.org/10.1080/0144929X.2013.805243
  7. Firmansyah, A., 2022. Analisis Penerimaan Learning Management System Akuntansi Terintegrasi Menggunakan Pendekatan Utaut Yang Dimodifikasi Dan Teori Difusi Inovasi. ABIS: Accounting and Business Information Systems Journal, 10(3). https://doi.org/10.22146/abis.v10i3.79050
  8. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M., 2022. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (3rd ed.). SAGE Publications, Inc
  9. Hidayat, A. R., 2023. Analisis Adopsi Penggunaan Sistem Pembayaran Fintech pada Generasi Milenial Menggunakan Teori Difusi Inovasi. Jurnal Ilmu Manajemen, 13(1), 117–132. https://doi.org/10.32502/jimn.v13i2.6974
  10. Howard, R., Restrepo, L., & Chang, C. Y., 2017. Addressing individual perceptions: An application of the unified theory of acceptance and use of technology to building information modelling. International Journal of Project Management, 35(2), 107–120. https://doi.org/10.1016/j.ijproman.2016.10.012
  11. Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D., 2014. Innovation adoption attributes: a review and synthesis of research findings. European Journal of Innovation Management, 17(3), 327–348. https://doi.org/http://dx.doi.org/10.1108/EJIM-08-2012-0083
  12. Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D., 2015. Empirical Examination of the Role of Three Sets of Innovation Attributes for Determining Adoption of IRCTC Mobile Ticketing Service. Information Systems Management, 32(2), 153–173. https://doi.org/https://doi.org/10.1080/10580530.2015.1018776
  13. Kapoor, K. K., & Williams, M. D., 2014. Rogers ’ Innovation Adoption Attributes : A Systematic Review and Synthesis of Existing Research. Information Systems Management, 31(1), 74–91. https://doi.org/http://dx.doi.org/10.1080/10580530.2014.854103
  14. Khurshid, M. M., Zakaria, N. H., Rashid, A., & Shafique, M. N., 2018. Examining the factors of open government data usability from academician’s perspective. International Journal of Information Technology Project Management, 9(3), 72–85. https://doi.org/10.4018/IJITPM.2018070105
  15. Kim, C., Mirusmonov, M., & Lee, I., 2013. An Empirical Examination of Factors Influencing the Intention to Use Mobile Payment. Computers in Human Behavior, 26(3), 310–322. https://doi.org/10.1016/j.chb.2009.10.013
  16. Lai, Y., Sun, H., & Ren, J., 2017. Understanding The Determinants of Big Data Analytics (BDA) Adoption in Logistics and Supply Chain Management: An Empirical Investigation. International Journal of Logistics Management, 29(2), 676–703. https://doi.org/https://doi.org/10.1108/IJLM-06-2017-0153
  17. Lawson-Body, A., Illia, A., Willoughby, L., & Lee, S., 2014. Innovation characteristics influencing veterans’ adoption of E-government services. Journal of Computer Information Systems, 54(3), 34–44. https://doi.org/10.1080/08874417.2014.11645702
  18. Liu, Y., Yang, Y., Wei, J., & Wang, X., 2015. An examination on RFID innovation diffusions in Chinese public intelligent transportation services. International Journal of Mobile Communications, 13(5), 549–566. https://doi.org/10.1504/IJMC.2015.070971
  19. Lu, M., Huang, C., Wang, R., & Li, H., 2023. Customer ’ s Adoption Intentions toward Autonomous Delivery Vehicle Services : Extending DOI Theory with Social Awkwardness and Use Experience. Journal of Advanced Transportation, 2023, 3440691. https://doi.org/https://doi.org/10.1155/2023/3440691
  20. Mukerjee, H. S., Deshmukh, G. K., Mukherjee, D., & Chawla, N., 2023. Investigating Influence of Moderators in Adopting Internet: Indian Seniors Perspective. Global Business Review, 24(4), 721–741. https://doi.org/10.1177/0972150920908690
  21. Natarajan, T., Balasubramanian, S. A., & Kasilingam, D. L., 2017. Understanding The Intention to Use Mobile Shopping Applications and Its Influence on Price Sensitivity. Journal of Retailing and Consumer Services, 37(February), 8–22. https://doi.org/10.1016/j.jretconser.2017.02.010
  22. Qazi, W., Raza, S. A., & Shah, N., 2018. Acceptance of e-book reading among higher education students in a developing country : the modified diffusion innovation theory Wasim Qazi Syed Ali Raza and Nida Shah *. International Journal of Business Information Systems, 27(2), 222–245. https://doi.org/https://doi.org/10.1504/IJBIS.2018.089113
  23. Rajmohan, R., & Johar, P. D. D. M. G. M., 2020. Influence of Social Moderators in the Internet of Things of Srilankan Healthcare Services. International Journal of Recent Technology and Engineering (IJRTE), 9(1), 2154–2164. https://doi.org/10.35940/ijrte.a2815.059120
  24. Raman, R., Sairam, B., Veena, G., Vachharajani, H., & Nedungadi, P., 2021. Adoption of online proctored examinations by university students during COVID-19: Innovation diffusion study. Education and Information Technologies, 26(6), 7339–7358. https://doi.org/10.1007/s10639-021-10581-5
  25. Ringle, C. M., Wende, S., & Becker, J.-M., 2024. SmartPLS 4. Bönningstedt: SmartPLS. http://www.smartpls.com
  26. Rogers, E. M. (2003). Diffusion of Innovations (5th Editio). Free Press
  27. Rogers, E. M., 2015. Evolution: Diffusion of Innovations. In International Encyclopedia of the Social & Behavioral Sciences: Second Edition (Second Edi, Vol. 7). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.81064-8
  28. Shi, S., Wang, Y., Chen, X., & Zhang, Q., 2020. Conceptualization of Omnichannel Customer Experience and Its Impact on Shopping Intention : A Mixed-Method Approach. International Journal of Information Management, 50(September 2019), 325–336. https://doi.org/10.1016/j.ijinfomgt.2019.09.001
  29. Talukder, M. S., Chiong, R., Bao, Y., & Malik, B. H., 2019. Acceptance and Use Predictors of Fitness Wearable Technology and Intention to Recommend: An Empirical Study. Industrial Management & Data Systems, 119(1), 170–188. https://doi.org/10.1108/IMDS-01-2018-0009
  30. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D., 2003. User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. https://doi.org/https://doi.org/10.2307/30036540
  31. Venkatesh, V., Thong, J. Y. L., & Xu, X., 2012. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. https://doi.org/https://doi.org/10.2307/41410412
  32. Viana Pereira, F., Tavares, J., & Oliveira, T., 2023. Adoption of video consultations during the COVID-19 pandemic. Internet Interventions, 31(December 2022), 100602. https://doi.org/10.1016/j.invent.2023.100602
  33. Waheed, M., Kaur, K., Ain, N., & Sanni, S. A., 2015. Emotional attachment and multidimensional self-efficacy: Extension of innovation diffusion theory in the context of eBook reader. Behaviour and Information Technology, 34(12), 1147–1159. https://doi.org/10.1080/0144929X.2015.1004648
  34. Williams, M. D., Rana, N. P., & Dwivedi, Y.K., 2015. The Unified Theory of Acceptance and Use of Technology (UTAUT): a Literature Reiew. Journal of Enterprise Information Management, 28(3), 443–488. https://doi.org/http://dx.doi.org/10.1108/JEIM-09-2014-0088
  35. Wu, L. H., Wu, L. C., & Chang, S. C., 2016. Exploring consumers’ intention to accept smartwatch. Computers in Human Behavior, 64, 383–392. https://doi.org/10.1016/j.chb.2016.07.005
  36. Xiao, D., Bai, G., & Huang, Y., 2014. A Model of Consumer Perception and Behavioral Intention for E-Reading. The SIJ Transactions on Industrial, Financial & Business Management (IFBM), 2(6), 290–295
  37. Yoo, W., Yu, E., & Jung, J., 2018. Drone delivery: Factors affecting the public’s attitude and intention to adopt. Telematics and Informatics, 35(6), 1687–1700. https://doi.org/10.1016/j.tele.2018.04.014
  38. Yuen, K. F., Cai, L., Qi, G., & Wang, X., 2020. Technology Analysis & Strategic Management Factors influencing autonomous vehicle adoption : an application of the technology acceptance model and innovation diffusion theory. Technology Analysis & Strategic Management, 0(0), 1–15. https://doi.org/10.1080/09537325.2020.1826423
  39. Yuen, K. F., Wang, X., Ng, L. T. W., & Wong, Y. D., 2018. An Investigation of Customers’ Intention to Use Self-Collection Services for Last-Mile Delivery. Transport Policy, 66(March), 1–8. https://doi.org/10.1016/j.tranpol.2018.03.001
  40. Yuen, K. F., Wong, Y. D., Ma, F., & Wang, X., 2020. The determinants of public acceptance of autonomous vehicles: An innovation diffusion perspective. Journal of Cleaner Production, 270, 121904. https://doi.org/10.1016/j.jclepro.2020.121904

Last update:

No citation recorded.

Last update: 2025-03-11 10:14:58

No citation recorded.