BibTex Citation Data :
@article{JSINBIS9720, author = {Noor Azizah and Kusworo Adi and Achmad Widodo}, title = {Metode Adaptive Neuro Fuzzy Inference System (ANFIS) untuk Prediksi Tingkat Layanan Jalan}, journal = {Jurnal Sistem Informasi Bisnis}, volume = {3}, number = {3}, year = {2013}, keywords = {}, abstract = { Tingkat pelayanan pada suatu jalan menunjukkan ukuran kualitas suatu jalan dan digunakan sebagai ukuran untuk membatasi volume lalu lintas suatu jalan. Tingkat pelayanan jalan yang kurang berdampak pada kemacetan arus lalu lintas dan saat ini merupakan permasalahan yang serius, terlebih di kota metropolitan. Maka perlu dikembangkan sebuah prediksi tingkat layanan jalan dengan menggunakan metode ANFIS ( Adaptive Neuro Fuzzy Inference System ). Penelitian ini bertujuan untuk membantu dalam proses pengambilan keputusan dan mencari alternatif solusi untuk mengatasi permasalahan kemacetan arus lalu lintas yang terjadi. Pada penelitian ini, metode ANFIS digunakan untuk membangun sebuah prediksi tingkat layanan jalan. Parameter masukan pada proses pembelajaran ANFIS juga sangat mempengaruhi untuk proses prediksi yang akan dilakukan. Adapun parameter input nya adalah jumlah membership function sebanyak 2, tipe membership function gaussian, error goal 1x10 -5 , dan nilai epoch 100. Hasil penelitian menunjukkan bahwa metode yang diusulkan dapat digunakan untuk membangun sebuah prediksi tingkat layanan jalan dengan nilai RMSE dan MAPE terbaik yang diperoleh masing-masing adalah 0,0106209 dan 0,93158%. Kata kunci: ANFIS, Prediksi, Tingkat Layanan Jalan. }, issn = {2502-2377}, doi = {10.21456/vol3iss3pp}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/9720} }
Refworks Citation Data :
Tingkat pelayanan pada suatu jalan menunjukkan ukuran kualitas suatu jalan dan digunakan sebagai ukuran untuk membatasi volume lalu lintas suatu jalan. Tingkat pelayanan jalan yang kurang berdampak pada kemacetan arus lalu lintas dan saat ini merupakan permasalahan yang serius, terlebih di kota metropolitan. Maka perlu dikembangkan sebuah prediksi tingkat layanan jalan dengan menggunakan metode ANFIS (Adaptive Neuro Fuzzy Inference System). Penelitian ini bertujuan untuk membantu dalam proses pengambilan keputusan dan mencari alternatif solusi untuk mengatasi permasalahan kemacetan arus lalu lintas yang terjadi.
Pada penelitian ini, metode ANFIS digunakan untuk membangun sebuah prediksi tingkat layanan jalan. Parameter masukan pada proses pembelajaran ANFIS juga sangat mempengaruhi untuk proses prediksi yang akan dilakukan. Adapun parameter inputnya adalah jumlah membership function sebanyak 2, tipe membership function gaussian, error goal 1x10-5, dan nilai epoch 100.
Hasil penelitian menunjukkan bahwa metode yang diusulkan dapat digunakan untuk membangun sebuah prediksi tingkat layanan jalan dengan nilai RMSE dan MAPE terbaik yang diperoleh masing-masing adalah 0,0106209 dan 0,93158%.
Kata kunci: ANFIS, Prediksi, Tingkat Layanan Jalan.
Article Metrics:
Last update:
Last update: 2024-11-15 14:38:42
Authors who submit the manuscripts to Journal JSINBIS must understand and agree that if the manuscript is accepted for publication, the copyright of the article belongs to JSINBIS and Diponegoro University as the journal publisher.
Copyright includes the exclusive right to reproduce and provide articles in all forms and media, including reprints, photographs, microfilm and any other similar reproductions, as well as translations. The author reserves the rights to the following:
JSINBIS and Diponegoro University and the Editors make every effort to ensure that no false or misleading data, opinions or statements are published in this journal. The content of articles published in JSINBIS is the sole and exclusive responsibility of the respective authors.
Copyright transfer agreement can be found here: [Copyright transfer agreement in doc] and [Copyright transfer agreement in pdf].
JSINBIS (Jurnal Sistem Informasi Bisnis) is published by the Magister of Information Systems, Post Graduate School Diponegoro University. It has e-ISSN: 2502-2377 dan p-ISSN: 2088-3587 . This is a National Journal accredited SINTA 2 by RISTEK DIKTI No. 48a/KPT/2017.
Journal JSINBIS which can be accessed online by http://ejournal.undip.ac.id/index.php/jsinbis is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats