Metode Adaptive Neuro Fuzzy Inference System (ANFIS) untuk Prediksi Tingkat Layanan Jalan

Tingkat pelayanan pada suatu jalan menunjukkan ukuran kualitas suatu jalan dan digunakan sebagai ukuran untuk membatasi volume lalu lintas suatu jalan. Tingkat pelayanan jalan yang kurang berdampak pada kemacetan arus lalu lintas dan saat ini merupakan permasalahan yang serius, terlebih di kota metropolitan. Maka perlu dikembangkan sebuah prediksi tingkat layanan jalan dengan menggunakan metode ANFIS (Adaptive Neuro Fuzzy Inference System). Penelitian ini bertujuan untuk membantu dalam proses pengambilan keputusan dan mencari alternatif solusi untuk mengatasi permasalahan kemacetan arus lalu lintas yang terjadi.
Pada penelitian ini, metode ANFIS digunakan untuk membangun sebuah prediksi tingkat layanan jalan. Parameter masukan pada proses pembelajaran ANFIS juga sangat mempengaruhi untuk proses prediksi yang akan dilakukan. Adapun parameter inputnya adalah jumlah membership function sebanyak 2, tipe membership function gaussian, error goal 1x10-5, dan nilai epoch 100.
Hasil penelitian menunjukkan bahwa metode yang diusulkan dapat digunakan untuk membangun sebuah prediksi tingkat layanan jalan dengan nilai RMSE dan MAPE terbaik yang diperoleh masing-masing adalah 0,0106209 dan 0,93158%.
Kata kunci: ANFIS, Prediksi, Tingkat Layanan Jalan.
Article Metrics:
Last update: 2021-03-03 22:48:53
Last update: 2021-03-03 22:48:53
Penulis yang mengirimkan naskah harus memahami dan menyetujui bahwa jika diterima untuk dipublikasikan, hak cipta dari artikel adalah milik JSINBIS dan Universitas Diponegoro sebagai penerbit jurnal.
Hak cipta (copyright) meliputi hak eksklusif untuk mereproduksi dan memberikan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm dan setiap reproduksi lain yang sejenis, serta terjemahan. Penulis mempunyai hak untuk hal-hal berikut:
- menggandakan seluruh atau sebagian materi yang dipublikasikan untuk digunakan oleh penulis sendiri sebagai bahan pengajaran di kelas atau bahan presentasi lisan dalam berbagai forum;
- menggunakan kembali sebagian atau keseluruhan materi sebagai bahan kompilasi bagi karya tulis penulis;
- membuat salinan dari bahan yang dipublikasikan untuk didistribusikan di lingkungan institusi tempat penulis bekerja.
JSINBIS dan Universitas Diponegoro serta Editor melakukan segala upaya untuk memastikan bahwa tidak ada data, pendapat atau pernyataan yang salah atau menyesatkan yang dipublikasikan di jurnal ini. Isi artikel yang diterbitkan di JSINBIS adalah tanggung jawab tunggal dan eksklusif dari masing-masing penulis.