Kajian Algoritma Sequential Pattern Mining Dan Market Basket Analysis Dalam Pengenalan Pola Belanja Customer Untuk Layout Toko

*Rusito Rusito -  STEKOM Semarang, Indonesia
Published: 11 Dec 2013.
Open Access
Citation Format:
Article Info
Section: Research Articles
Language: EN
Statistics: 1630
Abstract

Penelitian ini membahas tentang keterkaitan antar item yang dibeli oleh customer dalam toko ritel. Pengetahuan keterkaitan item yang dibeli dapat digunakan untuk  menentukan tata letak barang dagangan toko ritel. Hal ini penting agar konsumen dapat mudah mendapatkan barang yang dibutuhkan. Sehingga dapat meningkatkan omzet penjualan toko ritel sehingga akhirnya menambah keuntungan bagi pemilik toko ritel. Teknik yang digunakan untuk menyelesaikan penggalian data dan keterkaitan pembelian tersebut menggunakan pendekatan Association rule dan Market Basket Analysis. Sedangkan untuk mencari keterkaitan item tersebut digunakan algoritma Sequential Pattern Mining. Digunakan karena mampu menangani jumlah database yang besar dan sangat baik disisi kecepatan pemrosesan. Berbagai aplikasi telah diidentifikasi, termasuk misalnya, cross-selling, analisis situs Web, pendukung keputusan, evaluasi kredit, acara prediksi kriminal, analisis perilaku pelanggan  dan deteksi penipuan. Dari penelitian yang telah dilakukan diperoleh  pola-pola belanja customer untuk membentuk suatu layout display dalam toko ritel. Penelitian ini juga menyajikan suatu kerja algoritma yang lebih efektif dari algoritma asli karena terdapat pembatasan perulangan. Untuk kombinasi maksimal 5 item dengan waktu eksekusi 421.06 detik untuk 200 nota.

 

Kata kunci : Data Mining, Algoritma Sequential Pattern Mining, Market Basket Analysis, Apriori, Layout, Toko Ritel

Article Metrics: