BibTex Citation Data :
@article{JSINBIS9866, author = {Dega Wibowo and Achmad Widodo}, title = {Diagnosis Kerusakan Bantalan Gelinding Pada Sistem Industri Dengan Metode Self Organizing Map (SOM)}, journal = {Jurnal Sistem Informasi Bisnis}, volume = {4}, number = {1}, year = {2014}, keywords = {}, abstract = { This research is discussing about the usage of data mining which addressed to damage diagnosis of rolling bearings. Data input was obtained from signal frequency feature extraction which taken from calibration against rolling bearings. The diagnosis was extremely important to industrial machines since this diagnosis can help to discover damages that occurred so that total failure of cessation of the machines can be avoided and industrial machines treatment costs can be optimized. Method used in this research is Self Organizing Map (SOM), SOM method on this research was done by sequence: signal frequency data that have been through the process of acquisition and preprocessing, feature extraction, Principal Component Analysis (PCA), then come into the process of SOM so that accuracy of the diagnosis process can be discovered. The result of this research is a software that can diagnose rolling bearings damage on industrial system. From tests result, software that has been produced was able to diagnose rolling bearings damage. Accuracy result shown 87.5% success, this software can be developed further to help technicians in diagnosing rolling bearings damage. This research method can be developed further to detect other damages in industrial systems. Keywords : Data mining; PCA; SOM; Diagnosis; Rolling bearings; Statistic feature extraction }, issn = {2502-2377}, pages = {58--66} doi = {10.21456/vol4iss1pp58-66}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/9866} }
Refworks Citation Data :
This research is discussing about the usage of data mining which addressed to damage diagnosis of rolling bearings. Data input was obtained from signal frequency feature extraction which taken from calibration against rolling bearings. The diagnosis was extremely important to industrial machines since this diagnosis can help to discover damages that occurred so that total failure of cessation of the machines can be avoided and industrial machines treatment costs can be optimized. Method used in this research is Self Organizing Map (SOM), SOM method on this research was done by sequence: signal frequency data that have been through the process of acquisition and preprocessing, feature extraction, Principal Component Analysis (PCA), then come into the process of SOM so that accuracy of the diagnosis process can be discovered. The result of this research is a software that can diagnose rolling bearings damage on industrial system. From tests result, software that has been produced was able to diagnose rolling bearings damage. Accuracy result shown 87.5% success, this software can be developed further to help technicians in diagnosing rolling bearings damage. This research method can be developed further to detect other damages in industrial systems.
Keywords: Data mining; PCA; SOM; Diagnosis; Rolling bearings; Statistic feature extraction
Article Metrics:
Last update:
Last update: 2024-12-19 23:01:06
Authors who submit the manuscripts to Journal JSINBIS must understand and agree that if the manuscript is accepted for publication, the copyright of the article belongs to JSINBIS and Diponegoro University as the journal publisher.
Copyright includes the exclusive right to reproduce and provide articles in all forms and media, including reprints, photographs, microfilm and any other similar reproductions, as well as translations. The author reserves the rights to the following:
JSINBIS and Diponegoro University and the Editors make every effort to ensure that no false or misleading data, opinions or statements are published in this journal. The content of articles published in JSINBIS is the sole and exclusive responsibility of the respective authors.
Copyright transfer agreement can be found here: [Copyright transfer agreement in doc] and [Copyright transfer agreement in pdf].
JSINBIS (Jurnal Sistem Informasi Bisnis) is published by the Magister of Information Systems, Post Graduate School Diponegoro University. It has e-ISSN: 2502-2377 dan p-ISSN: 2088-3587 . This is a National Journal accredited SINTA 2 by RISTEK DIKTI No. 48a/KPT/2017.
Journal JSINBIS which can be accessed online by http://ejournal.undip.ac.id/index.php/jsinbis is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats