Simulasi CFD pada Kapal Planing Hull

*Samuel Samuel scopus  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia
Andi Trimulyono  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro
Ari Wibawa Budi Santosa  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia
Received: 7 Nov 2019; Published: 13 Nov 2019.
Open Access

Citation Format:
Article Info
Section: Research Articles
Language: EN
Statistics: 367 264
Abstract

Akurasi dalam memprediksi hambatan kapal adalah salah satu aspek penting dalam mendesain lambung kapal. Secara umum, hambatan kapal dengan type planing lebih rumit daripada type displacement. Planing hull memiliki karakteristik unik seperti trim, heave, hard-chine, Froude number tinggi dan dead-rise angle. Gaya hidrodinamik pada planing hull lebih dominan daripada gaya hidrostatik. Analisis numerik menggunakan Finite Volume Method (FVM) dipilih untuk menyelesaikan masalah hidrodinamik. Dalam penelitian ini, persamaan (RANS Reynolds-Averaged Navier-Stokes) digunakan untuk menggambarkan model turbulensi dengan k-ε. Secara umum, pemodelan Volume of Fluid (VOF) menggunakan aliran multiphase Euler yang diasumsikan air dan udara sebagai phase. Tujuan dari penelitian ini adalah untuk memperkenalkan perhitungan kapal type planing hull untuk memprediksi hambatan kapal dan seakeeping. Studi validasi ini dilakukan dengan menggunakan eksperimen Fridsma hullform. Hasil pada penelitian ini menunjukkan bahwa simulasi numerik pada jenis planing hull dapat diprediksi dengan akurasi yang cukup baik.

Keywords: Planing hull, CFD, Finite Volume Method, Volume of Fluid, RANS

Article Metrics:

  1. G. Fridsma, “A Systematic study of the rough-water performance of planing boats,” Hoboken, New Jersey, 1969.
  2. G. Fridsma, “A Systematic study of the rough-water performance of planing boats. Irregular waves.,” Hoboken, New Jersey, 1971.
  3. D. Savitsky, “Hydrodynamic design of planing hulls,” Mar. Technol. SNAME, vol. 1, no. 1, pp. 71–95, 1964.
  4. R. Yousefi, R. Shafaghat, and M. Shakeri, “Hydrodynamic analysis techniques for high-speed planing hulls,” Appl. Ocean Res., vol. 42, pp. 105–113, 2013.
  5. R. Yousefi, R. Shafaghat, and M. Shakeri, “High-speed planing hull drag reduction using tunnels,” Ocean Eng., vol. 84, pp. 54–60, 2014.
  6. V. Subramanian, “Pressure and drag influences due to tunnels in high-speed planing craft,” Int. Shipbuild. Prog., vol. 54, pp. 25–44, 2007.
  7. P. Lotfi, M. Ashrafizaadeh, and R. K. Esfahan, “Numerical investigation of a stepped planing hull in calm water,” Ocean Eng., vol. 94, pp. 103–110, 2015.
  8. S. M. Mousaviraad, Z. Wang, and F. Stern, “URANS studies of hydrodynamic performance and slamming loads on high-speed planing hulls in calm water and waves for deep and shallow conditions,” Appl. Ocean Res., vol. 51, pp. 222–240, 2015.
  9. M. Caponnetto, “Practical CFD simulations for planing hulls,” Int. Conf. High Perform. Mar. Veh. (HIPER’ 01), no. May, 2001.
  10. M. Caponnetto, H. Söding, and R. Azcueta, “Motion simulations for planing boats in waves,” Sh. Technol. Res., vol. 50, no. 4, pp. 182–198, 2003.
  11. I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: Simulation of the Fridsma hull using ALE-VMS,” Comput. Mech., vol. 50, no. 6, pp. 719–727, 2012.
  12. S. Brizzolara and F. Serra, “Accuracy of CFD codes in the prediction of planing surfaces hydrodynamic characteristics,” 2nd Int. Conf. Mar. Res. Transp., no. June 2007, pp. 147–158, 2007.
  13. A. De Marco, S. Mancini, S. Miranda, R. Scognamiglio, and L. Vitiello, “Experimental and numerical hydrodynamic analysis of a stepped planing hull,” Appl. Ocean Res., vol. 64, pp. 135–154, 2017.
  14. A. G. Avci and B. Barlas, “An experimental and numerical study of a high-speed planing craft with full-scale validation,” J. Mar. Sci. Technol., vol. 26, no. 5, pp. 617–628, 2018.
  15. B. Launder and D. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng., vol. 3, pp. 269–289, 1974.
  16. ITTC, “Practical guidelines for ship CFD applications,” in Specialist Committee on CFD in Marine Hydrodynamics of the 27th ITTC, 2014.
  17. A. Federici, “Design and analysis of non-conventional hybrid high-speed hulls with hydrofoils by CFD methods,” University of Genoa, 2014.