skip to main content

Numerical Investigation on The Open Water Characteristics of B-Series Propeller

*Andik Machfudin  -  Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, Indonesia
A.A.B. Dinariyana  -  Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, Indonesia
Dian Purnama Sari  -  National Research and Innovation Agency, Indonesia, Indonesia
Open Access Copyright (c) 2023 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Computer fluid dynamics (CFD) has been increasingly popular in the present day attributable to the reasonably accurate results, time and money savings, and ease of use for calculating the open water characteristics of the propeller. This paper presents the results of a computational evaluation of propeller open water characteristics based on various advanced velocities and advanced coefficients. KT, KQ, and ƞ are verified to get optimal performance study results. Research on mesh convergence is conducted with an advance coefficient of J = 0.6 with investigate three meshes coarse, medium, and fine.  The impacts of mesh density and mesh production are examined for the purpose of increasing the accuracy of the numerical findings. The B-series propeller is used to verify and validate the accuracy of case studies. Obtained results show that the CFD result is well in agreement with the experimental result.

Fulltext View|Download
Keywords: Open Water Characteristics; CFD; Propeller; Mesh Convergence; Advance Coefficient

Article Metrics:

  1. M. F. Islam and F. Jahra, “Improving Accuracy and Efficiency of CFD Predictions of Propeller Open Water Performance”, Journal of Naval Architecture and Marine Engineering, Vol.16, pp. 1-20, 2019
  2. A. Fitriadhya, N. A. Adamb, W. S. Kongc, F, Mahmuddind, and C. J. Quahe, ” Prediction of Propeller Performance using Computational Fluid Dynamics Approach”, EPI International Journal of Engineering, Vol. 2 No. 2, pp. 185-193, Aug 2019. doi: 10.25042/epi-ije.082019.15
  3. A. F. N. Oloan, I. M. Ariana, and A. Baidowi, “Open Water and Performance Analysis of Marine Propeller with PBCF Based CFD Method”, IOP Conf. Series: Earth and Environmental Science Vol. 972, No. 012050, 2022. doi: 10.1088/1755-1315/972/1/01205
  4. A. Fitriadhy, N. A. Adam, C.J. Quah, J. Koto, and F. Mahmuddin, ”CFD Prediction of B-Series Propeller Performance in Open Water”, CFD Letters, Vol. 12, Issue. 2, pp.58-68 2020
  5. M.S. Baital and I.K.A.P Utama, “CFD Analysis into the Drag Estimation of Smooth and Roughened Surface Due to Marine Biofouling”, IPTEK, The Journal for Technology and Science, Vol. 28, No. 3, December 2017
  6. C. G. Grlj, N. Degiuli, A. Farkas and I. Martic, “Numerical Study of Scale Effects on Open Water Propeller Performance”, Journal of Marine Science and Engineering, Vol.10, pp. 1132, 2022, doi: 10.3390/jmse10081132
  7. L. Savio and K. Koushan, “Open Water Characteristics of Three ModelScale Flexible Propellers”, VIII International Conference on Computational Methods in Marine Engineering, MARINE 2019
  8. W. Herucakra, L.P. Adnyani and L. Megantoro, “Integrity Assessment of Wall Distorted of Buried Gas Pipeline“, Kapal: Jurnal Ilmu Pengetahuan danTeknologi Kelautan, Vol. 20 No. 1, pp. 1-15, 2023
  9. D.A. Putri, M.H.N. Aliffrananda, S. Riyadi, S. Sutiyo, and I.K.A.P. Utama, ” Numerical Analysis on Added Resistance of a Crew Boat with Variation of Wave Period”, Kapal: Jurnal Ilmu Pengetahuan danTeknologi Kelautan, Vol. 20 No. 1, pp. 16-26, 2023. doi :10.14710/kapal.v20i1.48615
  10. M.R. Utina, Rina, E. Suwarni, P. Virliani, Widodo, D. Purnamasari, “Numerical Analysis of Submarine Hydrodynamic Force Near the Seabed”, Kapal: Jurnal Ilmu Pengetahuan danTeknologi Kelautan, Vol. 20 No. 1, pp. 27-33, 2023, doi: 10.14710/kapal.v18i3.41010
  11. Tran Ngoc Tu, “Numerical simulation of propeller open water
  12. characteristics using RANSE method”, Alexandria Engineering Journal, Vol.58, pp. 531-537, 2019. doi: 10.1016/j.aej.2019.05.005
  13. M. Zhao, W. Zhao, and D. Wan, “Numerical simulations of propeller cavitation flows based on OpenFOAM”, Journal of Hydrodynamics, 2020, doi: 10.1007/s42241-020-0071-8
  14. X. Zhou, C. Liu, H. Ren, and C. Xu, “Numerical Analysis of Propeller-Induced Hydrodynamic Interaction between Ships”, Journal of Marine Science and Engineering, Vol.11, pp. 537, 2023. doi: 10.3390/jmse11030537
  15. L. He and S. A. Kinnas, “Numerical simulation of unsteady propeller/rudder interaction”, International Journal of Naval Architecture and Ocean Engineering, Vol. 9, pp. 677-692, 2017. doi: 10.1016/j.ijnaoe.2017.02.004
  16. H.Jasak, V. Vukcevic, I. Gatin and I. Lalovic, “CFD validation and grid sensitivity studies of full-scale ship self-propulsion”, International Journal of Naval Architecture and Ocean Engineering, Vol. 11, pp. 33-43, 2019. doi: 10.1016/j.ijnaoe.2017.12.004
  17. L. Wang, C. Guo, Y. Su, P. Xu, and T. Wu, “Numerical analysis of a propeller during heave motion in the cavitating flow”, Applied Ocean Research, Vol.66, pp.131–145, 2017. doi: 10.1016/j.apor.2017.05.001
  18. W. Zhang, C. Chen, Z. Wang, Y. Li, H. Guo, J. Hu, H. Li and
  19. C. Guo, “Numerical simulation of structural response during propeller-rudder interaction”, Engineering Applications of Computational Fluid Mechanics, Vol. 15, No.1, pp.584–612, 2021. doi: 10.1080/19942060.2021.1899989
  20. J. Hu, W. Zhang, S. Sun, and C. Guo, “Numerical simulation of Vortex–Rudder interactions behind the propeller”, Ocean Engineering, Vol. 190, pp. 106446, 2019. doi: 10.1016/j.oceaneng.2019.106446
  21. F. Liao, X. Yang, S. Wang, and G. He, “Grid-dependence study for simulating propeller crash back using large-eddy simulation with immersed boundary method”, Ocean Engineering, Vol. 218, pp. 108211, 2020. doi: 10.1016/j.oceaneng.2020.108211
  22. A. Posa, R. Broglia, M. Felli, M. Falchi, and E. Balaras, “Characterization of the wake of a submarine propeller via Large-Eddy Simulation”, Computers & Fluids, Vol. 184, pp. 138-152, 2019. doi: 10.1016/j.compfluid.2019.03.011
  23. B. Zhang, C. Ding, and C.Liang, “High-Order Implicit Large-Eddy Simulation of Flow over a Marine Propeller”, Computers & Fluids, Vol. 224, pp. 104967, 2021. doi: 10.1016/j.compfluid.2021.104967
  24. ITTC – Recommended Procedures and Guidelines, “ Uncertainty Analysis in CFD Verification and Validation Methodology and Procedures”, 7.5-03-01-01, 2008

Last update:

No citation recorded.

Last update: 2024-09-07 11:06:01

No citation recorded.