BibTex Citation Data :
@article{Medstat23900, author = {Mira Andriyani and Subanar Subanar}, title = {PERAMALAN DATA PENUMPANG KERETA API JANUARI 2013-NOVEMBER 2018 DENGAN MENGGUNAKAN MAXIMAL OVERLAP DISCRETE WAVELET TRANSFORM- RECURRENT NEURAL NETWORK (MODWT-RNN)}, journal = {MEDIA STATISTIKA}, volume = {12}, number = {2}, year = {2019}, keywords = {MODWT; RNN; Train Passengers}, abstract = {The train is one of the public transportation that is very popular because it is affordable and free of congestion. There is often a buildup of train passengers at the station so that it sometimes causes an accumulation of passengers at the station and makes the situation at the station to be not conducive. In order to avoid a buildup of passengers, forecasting the number of passengers can be done. Forecasting is determined based on data in previous times. Data of train passengers in Java (excluding Jabodetabek) forms a non-stationary and contains nonlinear relationships between the lags. One of the nonlinear models that can be used is Recurrent Neural Network (RNN). Before RNN modeling, Maximal Overlap Wavelet Transform (MODWT) was used to make data more stationary. Forecasting model of train passengers in Java excluding Jabodetabek, Indonesia using MODWT-RNN results forecasting with RMSE is 252.85, while RMSE of SARIMA and RNN are 434.97 and 320.48. These results indicate that the MODWT-RNN model gives a more accurate result than SARIMA and RNN.}, issn = {2477-0647}, pages = {164--174} doi = {10.14710/medstat.12.2.164-174}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/23900} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2024-12-04 06:01:21
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: