skip to main content

GEOGRAPHICALLY WEIGHTED PANEL REGRESSION WITH FIXED EFFECT FOR MODELING THE NUMBER OF INFANT MORTALITY IN CENTRAL JAVA, INDONESIA

*Agus Rusgiyono  -  Department of Statistics, Faculty of Science and Mathematics, Diponegoro University, Indonesia
Alan Prahutama  -  Department of Statistics, Faculty of Science and Mathematics, Diponegoro University, Indonesia
Open Access Copyright (c) 2021 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
One of the regression methods used to model by region is Geographically Weighted Regression (GWR). The GWR model developed to model panel data is Geographically Weighted Panel Regression (GWPR). Panel data has several advantages compared to cross-section or time-series data. The development of the GWPR model in this study uses the Fixed Effect model. It is used to model the number of infant mortality in Central Java. In this study, the weighting used by the fixed bisquare kernel resulted in a significant variable percentage of clean and healthy households. The value of R-square is 67.6%. Also in this paper completed by spread map base on GWPR model.
Fulltext View|Download
Keywords: Geographycally Weighted Panel Regression; Fix Effect; Infat Mortality
Funding: Statistics Department, Diponegoro University, Faculty of Sciences and Mathematics, Dipoengoro University, Semarang, Indonesia

Article Metrics:

Article Info
Section: Articles
Language : EN
Statistics:
  1. Bai, X., Zhang, T., & Tian, S. (2020). Evaluating Fertilizer Use Efficiency and Spatial Correlation of its Determinants in China: A Geographically Weighted Regression Approach. International Journal of Environmental Research and Public Health, 17(23), 1–23. https://doi.org/10.3390/ijerph17238830
  2. Cai, R., Yu, D., & Oppenheimer, M. (2014). Estimating the Spatially Varying Responses of Corn Yields to Weather Variations Using Geographically Weighted Panel Regression. Journal of Agricultural and Resource Economics, 39(2), 230–252. https://researchwith.montclair.edu/en/publications/estimating-the-spatially-varying-responses-of-corn-yields-to-weat
  3. Chotimah, C., Sutikno, & Setiawan. (2019). Modelling of Income Inequality in East Java Using Geographically Weighted Panel Regression. IOP Conference Series: Materials Science and Engineering, 546(5). https://doi.org/10.1088/1757-899X/546/5/052019
  4. Diputra, T. F., Sadik, K., & Angraini, Y. (2012). Pemodelan Data Panel Spasial dengan Dimensi Ruang dan Waktu. Forum Statistika Dan Komputasi: Indonesian Journal of Statistics, 17(1), 6–14. journal.ipb.ac.id/index.php/statistika
  5. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relathionships. John Wiley & Sons, Inc
  6. Greene, william H. (2002). Econometric Analysis (5th ed.). Prentice Hall
  7. Ningrum, A. S., Rusgiyono, A., & Prahutama, A. (2020). Village Classification Index Prediction Using Geographically Weighted Panel Regression. Journal of Physics: Conference Series, 1524(1). https://doi.org/10.1088/1742-6596/1524/1/012040
  8. Prahutama, A., Warsito, B., & Mukid, M. (2018). Modelling Infant and Maternal Mortality Rate based on slum household uses Bivariate Spline Regression Method. E3S Web of Conferences, 73. https://doi.org/10.1051/e3sconf/20187312002
  9. Rita, Diah, O. (2015). Analisis Spasial Pengaruh Tingkat Pengangguran Terhadap Kemiskinan di Indonesia (Studi Kasus: Provinsi Jawa Tengah). Media Statistika, 8(1), 23–30
  10. Siswantining, T., Dewi Purwandani, N. P. C., Dewi Susilowati, M. H., & Wibowo, A. (2020). Geoinformatics of tuberculosis (TB) disease in Jakarta city Indonesia. International Journal of GEOMATE, 19(72), 35–42. https://doi.org/10.21660/2020.72.5599
  11. Sitorus, Y. M., & Yuliana, L. (2018). Penerapan Regresi Data Panel Pada Analisis Pengaruh Infrastruktur Terhadap Produktifitas Ekonomi Provinsi-Provinsi Di Luar Pulau Jawa Tahun 2010-2014. Media Statistika, 11(1), 1–15. https://doi.org/10.14710/medstat.11.1.1-15
  12. Slamet, I., Nugroho, N. F. T. A., & Muslich. (2018). Geographically Weighted Regression Model on Poverty Indicator. Journal of Physics: Conference Series, 943(1). https://doi.org/10.1088/1742-6596/943/1/012009
  13. Soemartojo, S. M., Ghaisani, R. D., Siswantining, T., Shahab, M. R., & Ariyanto, M. M. (2018). Parameter Estimation of Geographically Weighted Regression (GWR) Model Using Weighted Least Square and its Application. AIP Conference Proceedings, 2014(September). https://doi.org/10.1063/1.5054485
  14. Wang, J., Chen, K., & Song, X. (2020). Differences Among Influencing Factors of China’s Provincial Energy Intensity: Empirical Analysis from a Geographically Weighted Regression Model. Polish Journal of Environmental Studies, 29(4), 2901–2916. https://doi.org/10.15244/pjoes/113097
  15. Wang, S., & Wu, J. (2020). Spatial Heterogeneity of the Associations of Economic and Health Care Factors with Infant Mortality in China ising Geographically Weighted Regression and Spatial Clustering. Social Science and Medicine, 263, 113287

Last update:

No citation recorded.

Last update:

No citation recorded.