skip to main content

ESTIMASI SELANG KEPERCAYAAN NILAI UJIAN NASIONAL BERBASIS KOMPETENSI BERDASARKAN MODEL REGRESI SEMIPARAMETRIK MULTIRESPON TRUNCATED SPLINE

Lilik Hidayati  -  Departement of Mathematics, Airlangga University, Indonesia
*Nur Chamidah orcid scopus  -  Departement of Mathematics, Airlangga University, Indonesia
I Nyoman Budiantara  -  Department of Statistics, Institut Teknologi Sepuluh Nopember (ITS), Indonesia
Open Access Copyright (c) 2020 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Confidence interval estimation is important in statistical inference for the parameters of the regression model, but the theory of confidence interval estimation for multi-response semiparametric regression model parameters based on the truncated spline estimator has not been examined. In this study, we estimate the confidence interval of the multi-response semiparametric regression model based on the truncated spline estimator by using pivotal quantity method with the central limit theorem approach. This confidence interval theory is applied to data of competency-based national exam (UNBK) scores in West Nusa Tenggara Province where its UNBK  in the lowest position among other provinces in Indonesia. The method used for estimating parameters is weighted least square. The best model is determined based on the Generalized Cross Validation (GCV) minimum value. Based on the estimated 95% confidence interval of parameters of the multi-response truncated spline semiparametric regression model, the results showed that the insignificant factors affecting the UNBK scores were gender and parental education duration while the report card of scores and USBK scores had a positive effect on the UNBK scores but only the UNBK scores of mathematics that report card of scores factor has a negative effect on it.

Note: This article has supplementary file(s).

Fulltext View|Download |  Source Text
Article in Template
Subject
Type Source Text
  Download (240KB)    Indexing metadata
 CTA Form
Copyright Transfer Agreement (CTA)
Subject
Type CTA Form
  Download (1MB)    Indexing metadata
Keywords: Confidence Interval Estimation; UNBK Scores; Multi-Response Semiparametric; Truncated Spline

Article Metrics:

  1. Arikunto-Suharsimi. 2001. Dasar-dasar evaluasi Pendidikan. Jakarta : Bumi. Aksara. Hal. 27-31
  2. Budiantara, I.N. 2009. Splie Dalam Regresi Nonparametrik dan Semiparametrik, Sebuah Pemodelan Statistika Masa Kini dan Masa Mendatang. Pidato Pengukuhan Untuk Jabatan Guru Besar dalam Bidang Ilmu: Matematika Statistika dan Probabilitas, Pada Jurusan Statistika FMIPA, ITS, Surabaya
  3. Chamidah, N and Eridani. 2015. Designing of Growth Reference Chart by Using Birespon Semiparametric Regression Approach Based on P-Spline Estimator. International Journal of Applied Mathematics and Statistics, Int. J. Appl. Math. Stat.; Vol. 53; Issue No. 3
  4. Chamidah, N., & Rifada, M. 2016. Local Linier Estimator In Bi-Reaponse Semiparametric Regression Model For Estimating Median Growth Charts of Children. Far East Joural of Mathematical Sciences (FJMS) Volume 99, Number 8, 2016:1233-1244
  5. Chamidah, N., Kurniawan, K., Zaman, B., Muniroh, L. 2018. Least Square-Spline Estimator In Multi-Response Semiparametric Regression Model For Estimating Median Growth Charts Of Children In East Java, Indonesia. Far East Journal of Mathematical Sciences, Vol.107 (2), pp.295-307
  6. Hidayati, L., Chamidah, N., and Budiantara, I.N., 2019 Spline Truncated Estimator in Multiresponse Semiparametric Regression Model For Computer Based National Exam In West Nusa Tenggara. Proceeding 9th Annual Basic Science International Conference. IOP Conf. Series : Material Science and Engineering 546 (2019) 052029 doi: 10.1088/1757-899X/546/5/052029
  7. Hidayati, L., Chamidah, N., and Budiantara, I.N., 2020 Confidence Interval of Multiresponse Semiparametric Regression Model Parameters Using Truncated Spline. International Journal of Academic Applied Research (IJAAR) ISSN : 2643-9603, Publish in vol. 4, Issue 1 January 2020, Pages 14 -18
  8. Prahutama dan Suparti. 2017. Pemodelan Harga Cabai Di Kota Semarang Terhadap Harga Inflasi Menggunakan Regresi Semiparametrik Polinomial Lokal, Jurnal Statistika, Vol 5(1) Hal.1-7
  9. Puspendik Balitbang Kemendikbud. 2017. Panduan Pemanfaatan Hasil Ujian Nasional Tahun Pelajaran 2016/2017.BSNP Jakarta
  10. Ramadan W, Chamidah N, Zaman B, Muniroh L, and Lestari B 2019 Standard Growth Chart of Weight for Height to Determine Wasting Nutritional Status in East Java Based on Semiparametric Least Square Spline Estimator IOP Conf. Series: Materials Science and Engineering 546 052063 doi: 10.1088/1757-899X/546/5/052063
  11. Syaodih, S.N.2007, Metode Penelitian Pendidikan, Bandung; Remaja Rosda Karya
  12. Utami, T.W., Nur, I.M., dan Endah, S. 2018. Pemodelan Produksi Padi Menggunakan Regresi Semiparametrik Kernel, Jurnal Statistika, Vol 6 (2),Hal.160-165
  13. Wibowo,W., Haryatmi, S., Budiantara, I.N. 2012. On Multiresponse Semiparametric Regression Model. Journal of Mathematics and Statistics 8 (4): 489-499
  14. Yang. J., Yang. H. 2016. A robust penalized estimation for identification in
  15. semiparametric additive models. Statistics and Probability Letters 110 : 268-277

Last update:

No citation recorded.

Last update: 2024-11-27 09:54:36

No citation recorded.