skip to main content

THE APPLICATION OF THE SEMIPARAMETRIC GSTAR MODEL IN DETERMINING GAMMA-RAY LOG DATA ON SOIL LAYERS

*Yundari Yundari scopus  -  Mathematics Department, FMIPA, Universitas Tanjungpura, Indonesia
Shantika Martha  -  Statistics Department, FMIPA, Universitas Tanjungpura, Indonesia
Open Access Copyright (c) 2021 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
This research examines the semiparametric Generalized Space-Time Autoregressive (GSTAR) spacetime modeling and determines its spatial weight. In general, the spatial weights used are uniform, binary weights, and based on the distance, the result is a fixed weight. The GSTAR model is a stochastic model that takes into account its random variables. Thus, it is necessary to study the random spatial weights. This study introduced a new method to estimate the observed value of the GSTAR model semiparametric with a uniform kernel. The data involved the Gamma Ray (GR) log data on four coal drill holes. The semiparametric GSTAR modeling aimed to predict the amount of log GR in the unobserved soil layer based on the observation data information on the layer above it and its surrounding location. The results revealed that semiparametric GSTAR modeling could predict the presence of coal seams and their thickness of drill holes. The results also highlight the validity test on the out-sample data that the error in each borehole results in a small error. In addition, the error tends to approach the actual observed value at a depth of 1 meter down.
Fulltext View|Download
Keywords: space-time model; spatial weighted; superposition of rock-layer

Article Metrics:

  1. Abdullah, A. S., Matoha, S., Lubis, D. A., Falah, A. N., Jaya, I. G. N. M., Hermawan, E., & Ruchjana, B. N. (2018). Implementation of Generalized Space Time Autoregressive (GSTAR)-Kriging Model for Predicting Rainfall Data at Unobserved Locations in West Java. Applied Mathematics and Information Sciences, 12(3), 607–615. https://doi.org/10.18576/amis/120316
  2. Box, G., Jenkins, G., & Reinsel, G. (1994). Time Series Analysis Forecasting and Control (3rd ed.). Prentice-hall International
  3. Gao, J., & Yee, T. (2000). Adaptive Estimation in Partially Linear Autoregressive Models. Canadian Journal of Statistics, 28(3), 571–586. https://doi.org/10.2307/3315966
  4. Harsono, A. (1993). Pengantar Evaluasi Log. Schlumberger Data Services. Mulia Center
  5. Kuzairi, Miswanto, & Mardianto, M. F. F. (2021). Semiparametric Regression Based on Fourier Series for Longitudinal Data with Weighted Lest Square (WLS) optimization. Journal of Physics: Conference Series, 1836(1). https://doi.org/10.1088/1742-6596/1836/1/012038
  6. Kyriakidis, P. C., & Journel, G. (1999). Geostatistical Space – Time Models : A Review 1. 31(6), 651–684
  7. Matuszak, D. R. (1972). Stratigraphic Correlation of Subsurface Geologic Data by Computer. Journal of the International Association for Mathematical Geology, 4(4), 331–343. https://doi.org/10.1007/BF02114094
  8. Muliadi, M., Zulfian, Z., & Muhardi, M. (2019). Identifikasi Ketebalan Tanah Gambut Berdasarkan Nilai Resistivitas 3D: Studi Kasus Daerah Tempat Pembuangan Akhir Batu Layang Kota Pontianak. Positron, 9(2), 86. https://doi.org/10.26418/positron.v9i2.34821
  9. Nichols, G. (1999). Sedimentology and Stratigraphy. Willey-Blackwell
  10. Nurcahyani, H., Budiantara, I. N., & Zain, I. (2021). The Semiparametric Regression Curve Estimation by Using Mixed Truncated Spline and Fourier Series Model. AIP Conference Proceedings INTERNATIONAL CONFERENCE ON MATHEMATICS, COMPUTATIONAL SCIENCES AND STATISTICS 2020. https://doi.org/10.1063/5.0042870
  11. Pasaribu, U. S., Mukhaiyar, U., Huda, N. M., Sari, K. N., & Indratno, S. W. (2021). Modelling COVID-19 Growth Cases of Provinces in Java Island by Modified Spatial Weight Matrix GSTAR Through Railroad Passenger’s Mobility. Heliyon, 7(2), e06025. https://doi.org/10.1016/j.heliyon.2021.e06025
  12. Pramoedyo, H., Ashari, A., & Fadliana, A. (2020). Interpolasi Kriging dalam Pemodelan GSTAR-SUR dan GSTARX-SUR Pada Serangan Hama Penggerek Buah Kopi. Media Statistika, 13(1), 25–35. https://doi.org/10.14710/medstat.13.1.25-35
  13. Sahu, B. K. (1982). Stochastic Modelling of Mineral Deposits. Mineralium Deposita, 17(1), 99–105. https://doi.org/10.1007/BF00206378
  14. Thomas, L. (2013). Coal geology. In Choice Reviews Online (Vol. 50, Issue 12). https://doi.org/10.5860/choice.50-6779
  15. Wand, M., & Jones, M. (1995). Kernel Smoothing. In Angewandte Chemie International Edition, 6(11), 951–952. Springer-Sciences+Business Media BV
  16. Wu, Y., Wang, X., Chen, L., & Jiang, K. (2021). The Consistency for the Estimators of Semiparametric Regression Model with Dependent Samples. Acta MathematicaeApplicatae Sinica, English Series, 37, 299–318
  17. Yundari, Pasaribu, U. S., & Mukhaiyar, U. (2017). Error Assumptions on Generalized STAR Model. Journal of Mathematical and Fundamental Sciences, 49(2), 136–155. https://doi.org/10.5614/j.math.fund.sci.2017.49.2.4
  18. Yundari, Pasaribu, U. S., Mukhaiyar, U., & Heriawan, M. N. (2018). Spatial Weight Determination of GSTAR(1;1) Model by Using Kernel Function. Journal of Physics: Conference Series, 1028(1). https://doi.org/10.1088/1742-6596/1028/1/012223

Last update:

  1. Generalized space-time autoregressive (GSTAR) modeling with seemingly unrelated regression (SUR) for forecasting inflation data in five cities on the island of Sumatra

    Indah Suciati, Widiarti, Mustofa Usman, Warsono, Wamiliana. THE 4TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCES, MATHEMATICS, AND INFORMATICS: ICASMI2022, 2970 , 2024. doi: 10.1063/5.0208198

Last update: 2024-12-16 16:29:12

No citation recorded.