skip to main content

MODELING OF SEA SURFACE TEMPERATURE BASED ON PARTIAL LEAST SQUARE - STRUCTURAL EQUATION

*Miftahuddin Miftahuddin orcid scopus  -  Department of Statistics, Faculty of Mathematics and Sciences, Universitas Syiah Kuala, Indonesia
Retno Wahyuni Putri  -  Department of Statistics, Faculty of Mathematics and Sciences, Universitas Syiah Kuala, Indonesia
Ichsan Setiawan  -  Department of Marine, Faculty of Mathematics and Sciences, Universitas Syiah Kuala, Indonesia
Rina Suryani Oktari  -  Department of Family Medicine, Faculty of Mathematics and Sciences, Universitas Syiah Kuala, Indonesia
Open Access Copyright (c) 2021 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Variability of Sea Surface Temperature (SST) is one of the climatic features that influence global and regional climate dynamics. Missing data (gaps) in the SST dataset are worth investigating since they may statistically alter the value of the SST change. The partial least square-structural equation modeling (PLS-SEM) approach is used in this work to estimate the causality relationships between exogenous and endogenous latent variables. The findings of this study, which are significant indicators that have a loading factor value > 0.7 are as follows: i) sea surface temperature (oC) as a measure of the latent variable changes in SST, ii) wind speed (m/s) and relative humidity (%) as a measure of the latent variable of weather, and iii) air temperature (oC), long-wave solar radiation (w/m2) as a measure of climate latent variables. The size of the Rsquare value is influenced by the number of gaps. The results of the boostrapping show that the latent variables of weather and climate have a significant effect on changes in SST which are indicated by the value of tstatistics > ttabel. The structural model obtained Changes in SST (η) = -0.330 weather + 0.793 climate + ζ. The model shows that the weather has a negative coefficient, which means that the better the weather conditions, the lower the SST changes. Climate has a positive coefficient, which means that the better the climate, the SST changes will also increase. Rising sea surface temperatures caused by an increase in climate can lead to global warming, impacting El-Nino and La-Nina events.
Fulltext View|Download
Keywords: Sea surface temperature; latent variables; PLS-SEM; weather; climate; El-Nino and La-Nina.

Article Metrics:

  1. Badan Meteorologi, Klimatologi, dan Geofisika. (2020). Iklim. www.bmkg.go.id. Tanggal akses 01 Januari 2021
  2. Ghozali, I. (2014). Structural Equation Modeling Metode Alternatif dengan Partial Least Square (PLS) Dilengkapi Software SmartPLS 3.00 Xistat 2014 dan WarpPLS 4.0. Edisi ke-4. Semarang: Badan Penerbit Universitas Diponegoro Semarang
  3. Haryono, S., P. Wardoyo. 2012. Structural Equation Modeling untuk Penelitian Manajemen Menggunakan AMOS 18.00. Penerbit PT Intermedia Personalia Utama. Bekasi
  4. Jaya M, Sumertajaya IM. 2008. Pemodelan persamaan struktural dengan partial least square. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika. Bogor
  5. Julismin, J. (2013). Dampak dan Perubahan Iklim di Indonesia. Jurnal Geografi, 5(1),39-46
  6. Kartasapoetra, A.G., 2004. Klimatologi Pengaruh Iklim terhadap Tanah dan Tanaman. PT Bumi Aksara, Jakarta
  7. Kurniawan, H. (2011). Partial Least Square (PLS) Sebagai Metode Alternatif SEM Berbasis Varians (LISREL) dalam Eksplorasi Data Survey dan Data Mining. Jurnal Telematika, 7(1)
  8. Mattjik AA, Sumertajaya. 2011. Sidik Peubah Ganda dengan Menggunakan SAS. Departemen Statistika FMIPA-IPB. Bogor
  9. Noviyanti, R. (2019). Faktor Yang Mempengaruhi Kompetensi Nelayan Di Teluk Banten: Menggunakan Partial Least Square-Structural Equation Modelling (Pls-Sem). Marine Fisheries: Journal of Marine Fisheries Technology and Management, 10(1), 33-44
  10. Purwanti, Y. (2014). Pendugaan Parameter Partial Least Square Regression (Plsr) Menggunakan Nonlinier Itertive Partial Least Square (Nipals) Pada Regresi Logistik Ordinal (Doctoral dissertation, Universitas Brawijaya)
  11. Safitri, S. (2015). El Nino, La Nina Dan Dampaknya Terhadap Kehidupan Di Indonesia. Jurnal Criksetra, 4(8), 153-160
  12. Supranto, J. (2000). Statistik Teori dan Aplikasi Edisi Keenam (Jilid I). Erlangga. Jakarta. Hlm, 1-27
  13. Syaifullah, M. D. (2015). Suhu Permukaan Laut Perairan Indonesia dan Hubungannya dengan Pemanasan Global. Jurnal Segara, 11(2), 103-113
  14. Tjasyono, H.K dan Bayong. (2004). Klimatologi. ITB, Bandung
  15. Minis, Marshall. (2001). Weather. Marshall Editions

Last update:

  1. The Influence of IT Governance and Digital Technology Adoption to Institutional Performance Mediated by Instructional Leadership

    Gat, Susanti, Husni Teia Sukmana, Velwin Wibowo, Hendra Kurniawan, Hendrik. 2022 10th International Conference on Cyber and IT Service Management (CITSM), 2022. doi: 10.1109/CITSM56380.2022.9935962

Last update: 2024-12-15 07:54:12

No citation recorded.