BibTex Citation Data :
@article{Medstat42755, author = {Jus Prasetya and Abdurakhman Abdurakhman}, title = {COMPARISON OF SMOTE RANDOM FOREST AND SMOTE K-NEAREST NEIGHBORS CLASSIFICATION ANALYSIS ON IMBALANCED DATA}, journal = {MEDIA STATISTIKA}, volume = {15}, number = {2}, year = {2023}, keywords = {Machine Learning; Classification; SMOTE; Random Forest; k-Nearest Neighbors}, abstract = {In machine learning study, classification analysis aims to minimize misclassification and also maximize the results of prediction accuracy. The main characteristic of this classification problem is that there is one class that significantly exceeds the number of samples of other classes. SMOTE minority class data is studied and extrapolated so that it can produce new synthetic samples. Random forest is a classification method consisting of a combination of mutually independent classification trees. K-Nearest Neighbors which is a classification method that labels the new sample based on the nearest neighbors of the new sample. SMOTE generates synthesis data in the minority class, namely class 1 (cervical cancer) to 585 observation respondents (samples) so that the total observation respondents are 1208 samples. SMOTE random forest resulted an accuracy of 96.28%, sensitivity 99.17%, specificity 93.44%, precision 93.70%, and AUC 96.30%. SMOTE K-Nearest Neighborss resulted an accuracy of 87.60%, sensitivity 77.50%, specificity 97.54%, precision 96.88%, and AUC 82.27%. SMOTE random forest produces a perfect classification model, SMOTE K-Nearest neighbors classification produces a good classification model, while the random forest and K-Nearest neighbors classification on imbalanced data results a failed classification model.}, issn = {2477-0647}, pages = {198--208} doi = {10.14710/medstat.15.2.198-208}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/42755} }
Refworks Citation Data :
Article Metrics:
Last update:
COMPARISON OF LOGISTIC MODEL TREE AND RANDOM FOREST ON CLASSIFICATION FOR POVERTY IN INDONESIA
Last update: 2024-11-21 08:57:10
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: