skip to main content

COMPARISON OF LOGISTIC MODEL TREE AND RANDOM FOREST ON CLASSIFICATION FOR POVERTY IN INDONESIA

Sukarna Sukarna  -  Universitas Negeri Makassar, Indonesia
*Khairil Anwar Notodiputro  -  IPB University, Indonesia
Bagus Sartono  -  IPB University, Indonesia
Open Access Copyright (c) 2023 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Classification methods are commonly employed to ensure homogeneous data within each group, facilitating the prediction of specific categories. The most frequently used classification models are Logistic Model Tree (LMT) and Random Forest (RF). This study aims to assess the accuracy rate in predicting the poverty status of regencies or towns across Indonesia, utilizing eight independent variables. The entire dataset was obtained from the official Central Bureau of Statistics website. The study investigates the accuracy of various iterations and combinations of training data. The results indicate that RF outperforms LMT in terms of accuracy, achieving a 100% improvement in iterations k=10 and k=500 and a 75% improvement in iteration k=100. Consequently, the RF proves to be more effective than the LMT for analyzing Indonesian poverty data, especially when incorporating all eight independent variables.
Fulltext View|Download
Keywords: Decision Tree; Logistic Model Tree; Random Forest; Poverty; Model Classification

Article Metrics:

  1. Afrianto, M. A. & Wasesa, M. (2020). Booking Prediction Models for Peer-to-peer Accommodation Listings using Logistics Regression, Decision Tree, K- Nearest Neighbor, and Random Forest Classifiers. Journal of Information Systems Engineering and Business Intelligence, 6(2), 123–132. http://e-journal.unair.ac.id/index.php/JISEBI
  2. BPS. (2022a). Kabupaten Gowa Dalam Angka 2022. In Kabupaten Gowa dalam Angka. BPS Kabupaten Gowa
  3. BPS. (2022b). Statistik Indonesia (Statistical Yearbook of Indonesia) 2022. In Statistik Indonesia (p. 790). BPS-Statistics Indonesia
  4. Breiman, L. (2021). Random Forest. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324
  5. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Biometrics, 40(3)
  6. Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., & Ma, J. (2017). A Comparative Study of Logistic Model Tree, Random Forest, and Classification and Regression Tree Models for Spatial Prediction of Landslide Susceptibility. Catena, 151, 147–160. https://doi.org/10.1016/j.catena.2016.11.032
  7. Chen, Y., Naud, C. M., Rangwala, I., Landry, C. C., & Miller, J. R. (2014). Comparison of The Sensitivity of Surface Downward Longwave Radiation to Changes in Water Vapor at Two High Elevation Sites. Environmental Research Letters, 9(11). https://doi.org/10.1088/1748-9326/9/11/114015
  8. Doetsch, P., Buck, C., Golik, P., Hoppe, N., Kramp, M., Laudenberg, J., Oberdorfer, C., Steingrube, P., Forster, J., & Mauser, A. (2009). Logistic Model Trees with AUC Split Criterion for the KDD Cup 2009 Small Challenge. Journal on Machine Learning Research: Workshop and Conference Proceedings, 7, 77–88. http://jmlr.csail.mit.edu/proceedings/
  9. Finaka, A. W. (2018). Indonesia Kaya Potensi Kelautan dan Perikanan. Indonesiabaik.Id. https://indonesiabaik.id/infografis
  10. Gao, W., & Ding, Z. (2022). Construction of Digital Marketing Recommendation Model Based on Random Forest Algorithm. Security and Communication Networks, 2022. https://doi.org/10.1155/2022/1871060
  11. Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118548387
  12. Liaw, A., & Wiener, M. (2002). Classification and Regression by Random Forest. R News, 2(3), 18–22
  13. Mohammadi, M., Khorrami, M. K., & Ghasemzadeh, H. (2022). Classification of Nanofluids Solutions Based on Viscosity Values: A Comparative Study of Random Forest, Logistic Model Tree, Bayesian Network, and Support Nector Machine Models. Infrared Physics & Technology, 125, 104273. https://doi.org/10.1016/j.infrared.2022.104273
  14. Mukodimah, S., & Fauzi, C. (2021). Comparison of Tree Implementation, Regression Logistics, and Random Forest To Detect Iris Types. Jurnal TAM (Technology Acceptance Model), 12(2), 149–157. https://doi.org/10.56327/jurnaltam.v12i2.1074
  15. Nhu, V. H., Mohammadi, A., Shahabi, H., Ahmad, B. Bin, Al-Ansari, N., Shirzadi, A., Geertsema, M., Kress, V. R., Karimzadeh, S., Kamran, K. V., Chen, W., & Nguyen, H. (2020a). Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. Forests, 11(8). https://doi.org/10.3390/F11080830
  16. Nhu, V., Shirzadi, A., Shahabi, H., Singh, S. K., Al-Ansari, N., Clague, J. J., Jaafari, A., Chen, W., Miraki, S., Dou, J., Luu, C., Gorski, K., Pham, B. T., Nguyen, H. D., & Ahmad, B. Bin. (2020b). Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. International Journal of Environmental Research and Public Health, 17(2749), 1–30. https://doi.org/10.3390/ijerph17082749
  17. Prasetya, J., & Abdulrakhman. (2022). Comparison of Smote Random Forest and Smote k-Nearest Neighbors Classification Analysis on Imbalanced Data. Media Statistika, 15(2), 198–208. https://doi.org/10.14710/medstat.15.2.198-208
  18. Priyam, A., Abhijeet, Gupta, R., Rathee, A., & Srivastava, S. (2013). Comparative Analysis of Decision Tree Classification Algorithms. International Journal of Current Engineering and Technology, 3(2), 334–337. http://inpressco.com/category/ijce
  19. Sari, P. (2021). Perbandingan Performa Metode Pohon Model Logistik dan Random Forest pada Pengklasifikasian Data [IPB]. https://doi.org/10.29244/xplore.v12i1.858
  20. Sartono, B., & Dharmawan, H. (2023). Pemodelan Prediksi Berbasis POHON Klasifikasi. PT Penerbit IPB Press
  21. Sekjend Kemenkes RI. (2012). Profil Kesehatan Indonesia 2012
  22. Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2019). Introduction to Data Mining (Second). Pearson Education, Inc
  23. Tien Bui, D., Pham, B. T., Nguyen, Q. P., & Hoang, N. D. (2016). Spatial Prediction of Rainfall-Induced Shallow Landslides using Hybrid Integration Approach of Least-Squares Support Vector Machines and Differential Evolution Optimization: a Case Study in Central Vietnam. International Journal of Digital Earth, 9(11), 1077–1097. https://doi.org/10.1080/17538947.2016.1169561
  24. Waluyo, A., Mukid, M. A., & Wuryandari, T. (2014). Perbandingan Klasifikasi Nasabah Kredit Menggunakan Regresi Logistik Biner dan CART (Classification and Regression Trees). Media Statistika, 7(2), 95–104

Last update:

No citation recorded.

Last update: 2025-01-21 07:45:10

No citation recorded.