BibTex Citation Data :
@article{Medstat5666, author = {Mika Asrini and Winita Sulandari and Santoso Wiyono}, title = {ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM)}, journal = {MEDIA STATISTIKA}, volume = {6}, number = {1}, year = {2013}, keywords = {}, abstract = { v\:* \{behavior:url(#default#VML);\} o\:* \{behavior:url(#default#VML);\} w\:* \{behavior:url(#default#VML);\} .shape \{behavior:url(#default#VML);\} M ixture a utoregressive (MAR) Model is a mixture of Gaussian a utoregressive (AR) components. The mixture model is capable for modelling of nonlinear time series with multimodal conditional distributions. This paper discusses about the parameters estimation using EM algorithm. All possible models are then applied to national maize production data. In this case, the BIC is used for the MAR model selection. Keywords : M ixture A utoregressive, EM A lgorithm, BIC, M aize P roduction Normal 0 false false false IN X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable \{mso-style-name:\"Table Normal\"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:\"\"; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:\"Calibri\",\"sans-serif\"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:\"Times New Roman\"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;\} }, issn = {2477-0647}, pages = {21--26} doi = {10.14710/medstat.6.1.21-26}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/5666} }
Refworks Citation Data :
Mixture autoregressive (MAR) Model is a mixture of Gaussian autoregressive (AR) components. The mixture model is capable for modelling of nonlinear time series with multimodal conditional distributions. This paper discusses about the parameters estimation using EM algorithm. All possible models are then applied to national maize production data. In this case, the BIC is used for the MAR model selection.
Keywords : Mixture Autoregressive, EM Algorithm, BIC, Maize Production
Article Metrics:
Last update:
Last update: 2024-11-26 17:18:50
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: