skip to main content

IS THE BOX-COX TRANSFORMATION NEEDED IN MODELING TELKOM’S STOCK PRICE USING NNAR AND DESH METHODS?

Michela Sheryl Noven  -  Department of Statistics, Universitas Sebelas Maret, Indonesia
Respatiwulan Respatiwulan  -  Department of Statistics, Universitas Sebelas Maret, Indonesia
*Winita Sulandari  -  Department of Statistics, Universitas Sebelas Maret, Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Accurate stock price forecasting requires appropriate preprocessing, particularly for time series data with high variability and nonlinear patterns. This study investigates whether applying the Box-Cox Transformation (BCT) improves forecasting performance when modeling Telkom Indonesia's stock price using Neural Network Autoregressive (NNAR) and Double Exponential Smoothing Holt (DESH) methods. The NNAR model architecture is selected based on nonlinearity testing of lag variables, while DESH parameters are optimized by minimizing mean square error. Forecasting accuracy is evaluated using Mean Absolute Percentage Error (MAPE), root Mean Square Error (RMSE), and Mean Percentage Error (MPE), comparing models built with and without BCT. Results show that BCT does not enhance forecasting accuracy for either NNAR or DESH. Moreover, the NNAR model without BCT outperforms DESH, producing approximately 50% lower MAPE, RMSE, and MPE values on the testing dataset. These findings suggest that BCT may not be necessary for time series modeling in this case, and NNAR without transformation is recommended for forecasting Telkom's stock price.
Fulltext View|Download
Keywords: Financial Time Series; Neural Network; NNAR; DESH; Box-Cox Transformation.
Funding: RKAT Universitas Sebelas Maret for the 2025 Fiscal Year through the Research Strengthening of Research Group Capacity Scheme (PKGR-UNS B) under Research Assignment Agreement Number: 371/UN27.22/PT.01.03/2025

Article Metrics:

  1. Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction. Journal of Applied Mathematics, 2014. https://www.hindawi.com/journals/jam/2014/614342/abs/
  2. Ahmad, F., & Khan, R. A. (2015). A Power Comparison of Various Normality Tests. Pakistan Journal of Statistics and Operation Research, 11(3), 331–345
  3. Alias, A. R., Zainun, N. Y., & Rahman, I. A. (2016). Comparison Between ARIMA and DES Methods of Forecasting Population for Housing Demand in Johor. MATEC Web of Conferences, 81, 07002
  4. Ansari Saleh, A., & Boj, E. (2021). Application of neural Network Time Series (NNAR) and ARIMA to Forecast Infection Fatality Rate (IFR) of Covid-19 in Brazil. JOIV: International Journal on Informatics Visualization, 5(1), 8–10
  5. Arora, S., & Taylor, J. W. (2013). Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods. IEEE Transactions on Power Systems, 28(3), 3235–3242. https://doi.org/10.1109/TPWRS.2013.2252929
  6. Bernardi, M., & Petrella, L. (2015). Multiple Seasonal Cycles Forecasting Model: The Italian Electricity Demand. Statistical Methods & Applications, 24(4), 671–695. https://doi.org/10.1007/s10260-015-0313-z
  7. Dudek, G., Pelka, P., & Smyl, S. (2021). A Hybrid Residual Dilated LSTM and Exponential Smoothing Model for Midterm Electric Load Forecasting. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2879–2891
  8. Fahmi, I. (2014). Analisis Laporan Keuangan (4th ed.). Bandung: Alfabeta. https://inlislite.uin-suska.ac.id/opac/detail-opac?id=7536
  9. Hossain, M. F., Nandi, D. C., & Uddin, K. M. K. (2020). Prediction of Banking Sectors Financial Data of Dhaka Stock Exchange Using Autoregressive Integrated Moving Average (ARIMA) Approach. International Journal of Material and Mathematical Sciences, 2(4), 64–70
  10. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd edition). OTexts. https://Otexts.com/fpp2/
  11. Kim, H. Y., & Won, C. H. (2018). Forecasting the Volatility of Stock Price Index: A Hybrid Model Integrating LSTM with Multiple GARCH-type Models. Expert Systems with Applications, 103, 25–37
  12. Lee, M. H., Sadaei, H. J., & Suhartono. (2013). Improving TAIEX Forecasting Using Fuzzy Time Series with Box–Cox Power Transformation. Journal of Applied Statistics, 40(11), 2407–2422. https://doi.org/10.1080/02664763.2013.817548
  13. Marvilia, B. L. L. (2013). Pemodelan dan Peramalan Penutupan Harga Saham PT. Telkom dengan Metode ARCH-GARCH. MATHunesa: Jurnal Ilmiah Matematika, 1(1). https://ejournal.unesa.ac.id/index.php/mathunesa/article/view/1372
  14. Nazim, A., & Afthanorhan, A. (2014). A Comparison Between Single Exponential Smoothing (SES), Double Exponential Smoothing (DES), Holt’s (brown) and Adaptive Response Rate Exponential Smoothing (ARRES) Techniques in Forecasting Malaysia Population. Global Journal of Mathematical Analysis, 2(4), 276–280
  15. Nwakuya, M. T., & Nwabueze, J. C. (2018). Application of Box-Cox Transformation as A Corrective Measure To Heteroscedasticity Using An Economic Data. American Journal of Mathematics and Statistics, 8(1), 8–12
  16. Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting Stock and Stock Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning Techniques. Expert Systems with Applications, 42(1), 259–268
  17. Prabowo, H., Suhartono, S., & Prastyo, D. D. (2020). The Performance of Ramsey Test, White Test and Terasvirta Test in Detecting Nonlinearity. Inferensi, 3(1), 1–12
  18. Proietti, T. (2014). Exponential Smoothing, Long Memory and Volatility Prediction. CEIS Working Paper No. 319. https://doi.org/10.2139/ssrn.2475784
  19. Rendon-Sanchez, J. F., & de Menezes, L. M. (2019). Structural Combination of Seasonal Exponential Smoothing Forecasts Applied To Load Forecasting. European Journal of Operational Research, 275(3), 916–924
  20. Rezaldi, D. A., & Sugiman, S. (2021). Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia. PRISMA, Prosiding Seminar Nasional Matematika, 4, 611–620. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/45036
  21. Sena, D., & Nagwani, N. K. (2016). A Neural Network Autoregression Model to Forecast Per Capita Disposable Income. ARPN Journal of Engineering and Applied Sciences, 11(22), 13123–13128
  22. Setiawan, C. A., & Rosa, T. (2023). The Analysis of The Effect of Return of Investment (ROI) on Stock Price and Financial Performance of a Company. Journal of Accounting, Management, Economics, and Business (ANALYSIS), 1(1), 20–29
  23. Sihombing, S. C., & Dahlia, A. (2022). Prediction of Stock Close Price on the Five Best Issuers Forbes Global 2000 Version using Chen’s Fuzzy Time Series Method. International Conference of Business and Social Sciences, 1163–1171. https://debian.stiesia.ac.id/index.php/icobuss1st/article/view/292
  24. Smyl, S. (2020). A Hybrid Method of Exponential Smoothing and Recurrent Neural Networks for Time Series Forecasting. International Journal of Forecasting, 36(1), 75–85. https://doi.org/10.1016/j.ijforecast.2019.03.017
  25. Son, H., Kim, Y., & Kim, S. (2020). Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid. Energies, 13(9), 2377
  26. Sulandari, W., Subanar, S., Suhartono, S., & Utami, H. (2016). Forecasting Electricity Load Demand Using Hybrid Exponential Smoothing-Artificial Neural Network Model. International Journal of Advances in Intelligent Informatics, 2(3). https://doi.org/10.26555/ijain.v2i3.69
  27. Sulandari, W., Suhartono, Subanar, & Rodrigues, P. C. (2021). Exponential Smoothing on Modeling and Forecasting Multiple Seasonal Time Series: An Overview. Fluctuation and Noise Letters, 20(4), 2130003-1-2130003–2130010. https://doi.org/10.1142/S0219477521300032
  28. Sulandari, W., Yudhanto, Y., Subanti, S., Setiawan, C. D., Hapsari, R., & Rodrigues, P. C. (2023). Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data. Energies, 16(22), Article 22. https://doi.org/10.3390/en16227495
  29. Taylor, J. W., & Snyder, R. D. (2012). Forecasting Intraday Time Series with Multiple Seasonal Cycles Using Parsimonious Seasonal Exponential Smoothing. Omega, 40(6), 748–757
  30. Telkom Indonesia. (2023). Profil dan Riwayat Singkat. https://www.telkom.co.id/sites/about-telkom/id_ID/page/profil-dan-riwayat-singkat-22
  31. Yonar, H., Yonar, A., Tekindal, M. A., & Tekindal, M. (2020). Modeling and Forecasting for the Number of Cases of the COVID-19 Pandemic with the Curve Estimation Models, the Box-Jenkins and Exponential Smoothing Methods. European Journal of Medical Oncology, 4(2), 160–165
  32. Zaini, B. J., Mansor, R., Yusof, Z. M., Gabda, D., & Seng, W. K. (2020). Comparison of Double Exponential Smoothing for Holt’s Method and Artificial Neural Network in Forecasting The Malaysian Banking Stock Markets. ASM Science Journal, 13, 1–5

Last update:

No citation recorded.

Last update: 2025-10-15 02:04:44

No citation recorded.