skip to main content

PERFORMANCE OF NEURAL NETWORK IN PREDICTING MENTAL HEALTH STATUS OF PATIENTS WITH PULMONARY TUBERCULOSIS: A LONGITUDINAL STUDY

*Lalu Ramzy Rahmanda  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
Adji Achmad Rinaldo Fernandes  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
Solimun Solimun  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
Lucius Ramifidiosa  -  Department of Mathematical Informatics, University of Antsiranana, Madagascar, Madagascar
Armando Jacquis Federal Zamelina  -  Department of Statistics, Brawijaya University, Indonesia
Open Access Copyright (c) 2023 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Comorbidity between pulmonary tuberculosis and mental health status requires effective psychiatric treatment. This study aims to predict anxiety and depression levels in patients with pulmonary tuberculosis and consider future mental health treatment for patients. A sample of 60 pulmonary tuberculosis patients in Malang were involved and evaluated longitudinally every two weeks over 13 periods. In this study, we use the Generalized Neural Network Mixed Model (GNMM) to obtain better results in predicting anxiety and depression levels in patients with pulmonary tuberculosis and compare the results with the Generalized Linear Mixed Model (GLMM). The flexibility of GLMM in modeling longitudinal data, and the power of neural network in performing a prediction makes GNMM a powerful tool for predicting longitudinal data. The result shows that neural network's prediction performance is better than the classical GLMM with a smaller MSPE and fairly accurate prediction. The MSPEs of the three compared models: 1-Layer GNMM, 2-Layer, and GLMM, respectively are 0.0067, 0.0075, 0.0321 for the anxiety levels, and 0.0071, 0.0002, and 0.0775 for the depression levels. Furthermore, future research needs to investigate the data with a larger sample size or high dimensional data with large network architectures to prove the robustness of GNMM.
Fulltext View|Download
Keywords: Artificial Neural Network; GLMM; Mental Health; Longitudinal Data Analysis; Pulmonary Tuberculosis

Article Metrics:

  1. Agbeko, C.K., Ali Mallah, M., He, B., Liu, Q., Song, H., & Wang, J. (2022). Mental Health Status and Its Impact on TB Treatment and Its Outcomes: A Scoping Literature Review. Frontier in Publich Health, 10, 1-12
  2. Breslow, N.E. & Clayton, D.G. (1993). Approximate Inference in Generalized Linear Mixed Models. Journal of the American Statistical Association, 88, 9-25
  3. Cascarano, A., Mur-petite, J., Hernández-González, J., Camacho, M., De Toro Eadie, N., Gkontra, P., Chadeau-Hyam, M., Vitrià, J., & Lekadir, K. (2023). Machine and Deep Learning for Longitudinal Biomedical Data: A Review of Methods and Applications. Artificial Intelligence Review ( https://doi.org/10.1007/s10462-023-10561-w), 1-61
  4. Diggle, P.J., Liang, Y.K., & Zeger, S.L. (2006). Analysis of Longitudinal Data, Second Edition. New York: Oxford
  5. Efron, B. (2020). Prediction, Estimation, and Attribution. Journal of the American Statistical Association, 115(530), 636-655
  6. Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004). Applied Longitudinal Analysis. New Jersey: John Wiley& Sons, Inc
  7. Geroldinger, A., Lusa, L., Nold, M., & Heinze, G. (2023). Leave-one-out cross-validation, penalization, and differential bias of some prediction model performance measures—a simulation study. Diagnostic and Prognostic Research, 1-11
  8. Gumantan, A., Aditya, M., Imam, Y., & Rizki. (2020). Tingkat Kecemasan Seseorang Terhadap Pemberlakuan New Normal dan Pengetahuan terhadap Imunitas Tubuh. Sport Science and Education Journal, 18-27. doi: 10.33365/ssej.v1i2.718
  9. Hanusz, Z., & TarasiŃska, J. (2014). Simulation Study on Improved Shapiro–Wilk Tests for Normality. Communications in Statistics - Simulation and Computation, 2093-2105
  10. Hayward, S.E., Deal, A., Rustage, K., Nellums, L.B., Sweetland, A.C., Boccia, D., Hargreaves, S., & Friedland, J. S. (2022). The Relationship Between Mental Health and Risk of Active Tuberculosis: A Systematic Review. BMJ Open, 12:e048945
  11. Hu, S., Wang, Y.G., Drovandi, C., & Cao, T. (2022). Predictions of Machine Learning with Mixed-effects in Analyzing Longitudinal Data under Model Misspecification. Statistical Methods & Applications, 681-711
  12. Jiang, Z., Sheetal, A., & De Millia, L. (2022). Using Machine Learning to Analyze Longitudinal Data: A Tutorial Guide and Best-Practice Recommendations for Social Science Researchers. Journal of Applied Psychology, 72(3), 891-1364
  13. Lara-Espinosa, J.V. & Hernández-Pando, R. (2021). Psychiatric Problems in Pulmonary Tuberculosis: Depression and Anxiety. Journal of Tuberculosis Research, 9(1), 31-50
  14. Mandel, F., Ghosh, R.P., & Barnett, I. (2021). Neural Networks for Clustered and Longitudinal Data Using Mixed Effects Models. Biometrics, 79, 711-721
  15. Moynihan , K.M., Ziniel, S.I., Johnston, E., Morell, E., Pituch, K., & Blume, E. D. (2022). A "Good Death" for Children with Cardiac Disease. Pediatric Cardiology, 744-755. doi: 10.1007/s00246-021-02781-0
  16. Nemesure, M.D., Heinz, M.V., Huang, R., & Jacobson, N.C. (2021). Predictive Modeling of Depression and Anxiety Using Electronic Health Records and A Novel Machine Learning Approach with Artificial Intelligence. Science Report, 1-9
  17. Poli, I. & Jones, R.D. (1994). A Neural Net Model for Prediction. Journal of the American Statistical Association, 89(425), 117-121
  18. Rahmi, N., Medison, I., & Suryadi, I. (2017). Hubungan Tingkat Kepatuhan Penderita Tuberkulosis Paru dengan Perilaku Kesehatan, Efek Samping OAT dan Peran PMO pada Pengobatan Fase Intensif di Puskesmas Seberang Padang September 2012 - Januari 2013. Jurnal Kesehatan Andalas, 345-350. doi: 10.25077/jka.v6i2.702
  19. Rohmaniah, S. A., & Chandra, N. E. (2018). Pemodelan Mortalita dengan Pendekatan GLMM. Lamongan: Penerbit Pustaka Ilalang
  20. RSSA (2022). Data Pasien Tuberkulosis Paru. Malang: Rumah Sakit Saiful Anwar
  21. Rudy, M., Widyadharma, P.E., & Adnyana, I.M. (2015). Reliability Indonesian Version of The Hospital Anxiety and Depression Scale (HADS) of Stroke Patients in Sanglah General Hospital Denpasar
  22. Suryani, Widianti, E., Hernawati, T., & Sriati, A. (2016). Psikoedukasi Menurunkan Tingkat Depresi, Stres dan Kecemasan pada Pasien Tuberkulosis Paru. Jurnal Ners, 11(1), 128-133. doi: 10.20473/jn.v11i1.1455
  23. Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Model for Longitudinal Data. New York: Springer Series in Statistics
  24. Wang, X., Li, X., Zhang, Q., Zhang, J., Chen, H., Xu, W., Fu, Y., Wang, Q., Kang, J., & Hou, G. (2018). A Survey of Anxiety and Depressive Symptoms in Pulmonary Tuberculosis Patients With and Without Tracheobronchial Tuberculosis. Frontiers in Psychiatry, 9(308), 1-10
  25. WHO (2022). Global Tuberculosis Report 2022. Geneva: World Health Organization
  26. Wu, H. & Zhang, J.T. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis. New Jersey: John WIley and Sons, Inc
  27. Zigmond, A.S. & Snaith, R.P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67(6), 361-370

Last update:

No citation recorded.

Last update: 2024-11-02 20:09:39

No citation recorded.