skip to main content

COMPARISON OF SARIMA AND HIGH-ORDER FUZZY TIME SERIES CHEN TO PREDICT KALLA KARS MOTORBIKE SALES

*Ummul Auliyah Syam orcid  -  Department of Statistics, School of Data Science, Mathematics, and Informatics, IPB University, Indonesia
Irdayanti Irdayanti  -  Department of Statistics, School of Data Science, Mathematics, and Informatics, IPB University, Indonesia
Khairil Anwar Notodiputro  -  Department of Statistics, School of Data Science, Mathematics, and Informatics, IPB University, Indonesia
Yenni Angraini  -  Department of Statistics, School of Data Science, Mathematics, and Informatics, IPB University, Indonesia
Laily Nissa Atul Mualifah  -  Department of Statistics, School of Data Science, Mathematics, and Informatics, IPB University, Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Forecasting sales time series data is essential for companies to support effective planning and decision-making processes. This study evaluates the strengths of the Seasonal Autoregressive Integrated Moving Average (SARIMA) and High-Order Fuzzy Time Series Chen (FTS Chen) models in predicting motorbike sales at Kalla Kars Company, a prominent automotive dealer in Sulawesi, Indonesia. SARIMA is renowned for accurately capturing seasonal patterns, while the FTS Chen model excels in handling data uncertainties and incorporating complex relationships through high-order fuzzy logic. Weekly sales data from January 2020 to February 2024 were analyzed, with 205 weeks used for training and 13 weeks for testing. The results indicate that the third-order FTS Chen model outperforms SARIMA, achieving a Root Mean Square Error (RMSE) of 1.88 and a Mean Absolute Percentage Error (MAPE) of 4.64%. Forecasts for the next eight weeks using the third-order FTS Chen model suggest a decline in sales, contrasting with the SARIMA model, which predicts a slight increase. These results show that Chen's FTS model is more accurate and reliable, making it an effective choice for forecasting Kalla Kars motorbike sales.
Fulltext View|Download
Keywords: Forecasting; Fuzzy Logic; High Order; Model Accuracy; Seasonal Model; Time Series.

Article Metrics:

  1. Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., & Cochran, J. J. (2014). Statistics for Business Economics. South-Western: Cengage Learning ALL
  2. Ariyanti, V. P., & Yusnitasari, T. (2023). Comparison of ARIMA and SARIMA for Forecasting Crude Oil Prices. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 405–413. DOI: 10.29207/resti.v7i2.4895
  3. Aziza, V. N., Moh’d, F. H., Maghfiroh, F. A., Notodiputro, K. A., & Angraini, Y. (2023). Performance Comparison of SARIMA Intervention and Prophet Models for Forecasting the Number of Airline Passenger at Soekarno-Hatta International Airport. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(4), 2107–2120. DOI: 10.30598/barekengvol17iss4pp2107-2120
  4. Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis Forecasting and Control (5th ed.). Hoboken, New Jersey: Wiley
  5. Chellai, F. (2022). Forecasting using Fuzzy Time Series. Munich Personal RePEc Archive Forecasting. Retrieved from https://mpra.ub.uni-muenchen.de/113848/
  6. Haji, H. A., Sadik, K., & Soleh, A. M. (2018). A Comparative Simulation Study of ARIMA and Fuzzy Time Series Model for Forecasting Time Series Data. International Journal of Scientific Research in Science, Engineering and Technology, 4(11), 49–56. DOI: 10.32628/ijsrset1184112
  7. Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed.). Melbourne: OTexts
  8. Iswari, A., Angraini, Y., & Masjkur, M. (2022). Comparison of The SARIMA Model and Intervention in Forecasting The Number of Domestic Passengers at Soekarno-Hatta International Airport. Indonesian Journal of Statistics and Its Applications, 6(1), 132–146. DOI: 10.29244/ijsa.v6i1p132-146
  9. Makatjane, K. D., & Moroke, N. D. (2016). Comparative Study of Holt-Winters Triple Exponential Smoothing and Seasonal ARIMA: Forecasting Short Term Seasonal car sales in South Africa. Risk Governance & Control: Financial Markets & Institutions, 6(1), 1–18
  10. Nasr, M. M. S. A. El. (2023). Fuzzy Time Series Forecasting: Chen, Markov Chain and Cheng Models. Journal of Alexandria University for Administrative Sciences, 60(2), 33–45. DOI: 10.21608/acj.2023.294123
  11. Ortiz-Arroyo, D. (2023). A Fuzzy Time Series-Based Model Using Particle Swarm Optimization and Weighted Rules. ArXiv, 1–19. DOI: 10.48550/arXiv.2310.18825
  12. Puspita, N., Afendi, F. M., & Sartono, B. (2022). Comparison of SARIMA, SVR, and GA-SVR Methods for Forecasting the Number of Rainy Days in Bengkulu City. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(1), 355–362. DOI: 10.30598/barekengvol16iss1pp353-360
  13. Rochayati, I., Syafitri, U. D., & Sumertajaya, I. M. (2019). Kajian Model Peramalan Kunjungan Wisatawan Mancanegara Di Bandara Kualanamu Medan Tanpa Dan Dengan Kovariat. Indonesian Journal of Statistics and Its Applications, 3(1), 18–32. DOI: 10.29244/ijsa.v3i1.171
  14. Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples. Cham: Springer
  15. Silva, P. C. de L. e, Junior, C. A. S., Alves, M. A., Silva, R., Weiss Cohen, M., & Guimarães, F. G. (2020). Forecasting in Non-stationary Environments with Fuzzy Time Series. Applied Soft Computing Journal, Vol. 97. DOI: 10.1016/j.asoc.2020.106825
  16. Sugianto, W. D., Soleh, A. M., & Afendi, F. M. (2017). Forecasting Simulation with ARIMA and Combination of Stevenson-Porter-Cheng Fuzzy Time Series. International Journal of Computer Science and Network, 6(6), 2277–5420
  17. Yuliyanto, M. R., Wuryandari, T., & Utami, I. T. (2023). Peramalan Pendapatan Bulanan Menggunakan Fuzzy Time Series Chen Orde Tinggi. Jurnal Gaussian, 12(1), 61–70. DOI: 10.14710/j.gauss.12.1.61-70
  18. Zha, W., Liu, Y., Wan, Y., Luo, R., Li, D., Yang, S., & Xu, Y. (2022). Forecasting Monthly Gas Field Production Based on The CNN-LSTM Model. Energy, Vol. 260, 124889. DOI: 10.1016/j.energy.2022.124889

Last update:

No citation recorded.

Last update: 2025-10-13 04:15:06

No citation recorded.