skip to main content

SPATIAL PANEL MODELING OF PROVINCIAL INFLATION IN INDONESIA TO MITIGATE ECONOMIC IMPACTS OF HEALTH CRISES

*Ani Budi Astuti  -  Department of Statistics, Brawijaya University, St. Veteran, Ketawanggede, Malang, Indonesia 65145, Indonesia
Henny Pramoedyo  -  Department of Statistics, Universitas Brawijaya, Malang, Indonesia, Indonesia
Suci Astutik  -  Department of Statistics, Universitas Brawijaya, Malang, Indonesia, Indonesia
An Nisa Dwi Setiarini  -  Bachelor's Degree Graduate of Statistics Department, Universitas Brawijaya, Malang, Indonesia, Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Probabilistic statistical modeling simplifies complex issues, including economic and health challenges, by applying inductive statistics. Spatial panel modeling, using Queen Contiguity weighting, has proven to be essential for analyzing inflation expenditure patterns during health crises, such as COVID-19 in Indonesia. This study highlights the impact of inflation on national economic stability and explores the inter-provincial relationships that influence inflation dynamics across expenditure groups. The purpose of this study is to develop a spatial panel model to address this gap, offering insights for policy and recovery strategies. The results reveal significant spatial interdependence in provincial inflation data, underscoring the role of spatial factors in economic analysis. Two models are identified: Spatial Autoregressive Model with Random Effects (SAR-RE) before the crisis and Spatial Error Model with Random Effects (SEM-RE) during the crisis. Transportation facilities consistently affect inflation, demonstrating the effectiveness of spatial panel modeling in guiding policies for economic stability and recovery.
Fulltext View|Download
Keywords: Economic Disasters and Disease; Inflation; Queen Contiguity; Regression Spatial Panel; Statistical Modeling

Article Metrics:

  1. Anselin, L., Le Gallo, J., & Jayet, H. (2008). Spatial Panel Econometrics, in the Econometrics of Panel Data. Springer, pp. 625–660
  2. Baltagi, B. (2005). Econometrics Analysis of Panel Data. 3rd Edition. England: John Wiley & Sons
  3. BPS DI YOGYAKARTA. (2022). Indeks Harga Konsumen Kota Yogyakarta 2022. Badan Pusat Statistik Provinsi Daerah Istimewa Yogyakarta. Available at: https://yogyakarta.bps.go.id (Accessed: 25 August 2023)
  4. BPS DKI JAKARTA. (2022). Indeks Harga Konsumen dan Inflasi Provinsi DKI Jakarta 2022. Badan Pusat Statistik Provinsi DKI Jakarta. Available at: https://jakarta.bps.go.id (Accessed: 25 August 2023)
  5. BPS JATIM. (2019). Indeks Harga Konsumen Provinsi Jawa Timur 2019. Badan Pusat Statistik Provinsi Jawa Timur. Available at: https://jatim.bps.go.id (Accessed: 25 August 2023)
  6. BPS JATIM. (2020). Indeks Harga Konsumen Provinsi Jawa Timur 2020. Badan Pusat Statistik Provinsi Jawa Timur. Available at: https://jatim.bps.go.id (Accessed: 25 August 2023)
  7. BPS JAWA BARAT. (2022). Indeks Harga Konsumen Menurut Kelompok Pengeluaran. Badan Pusat Statistik Provinsi Jawa Barat. Available at: https://jabar.bps.go.id (Accessed: 25 August 2023)
  8. BPS JAWA TENGAH. (2020). Indeks Harga Konsumen dan Inflasi Provinsi Jawa Tengah 2020. Badan Pusat Statistik Provinsi Jawa Tengah. Available at: https://jateng.bps.go.id (Accessed: 25 August 2023)
  9. BPS JAWA TENGAH. (2022). Indeks Harga Konsumen dan Inflasi Provinsi Jawa Tengah 2022. Badan Pusat Statistik Provinsi Jawa Tengah. Available at: https://jateng.bps.go.id (Accessed: 25 August 2023)
  10. Budiarta, I. N., & Surya, I. (2021). Spatial Analysis of Inflation in Indonesia: A Panel Data Approach. Jurnal Ekonomi dan Kebijakan Publik, 12(2), 115-130
  11. Elhorst, J. P. (2010). Spatial Panel Data Models, in Fischer, M. M. and Getis, A. (eds.) Handbook of Applied Spatial Analysis. New York: Springer
  12. Elhorst, J. P. (2014). Spatial Panel Data Models: Spatial Econometrics from Cross-Sectional Data to Spatial Panels. Springer, Vol. Ch.3
  13. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. England: John Wiley & Sons, Ltd
  14. Gujarati, D. N. (2004). Basic Econometric. 4th Edition. New York: The McGraw-Hill Companies
  15. Halim, H. F., & Junaidi, A. (2022). Panel Data Analysis of Inflation Determinants in Indonesia During Health Crises. Journal of Indonesian Economics, 29(1), 58-75
  16. Hsiao, C. (2014). Analysis of Panel Data. 3rd Edition. Cambridge University Press
  17. KEMENKES RI. (2021). Peran Ditjen Kesmas dalam Pandemi Covid 19. Kementerian Kesehatan Republik Indonesia. Available at: https://www.kemkes.go.id (Accessed: 23 August 2023)
  18. Lesage, J. P. (1999). The Theory and Practice of Spatial Econometrics. Department of Economics, University of Toledo
  19. Marsono. (2022). Pemodelan Spasial pada Pertumbuhan Ekonomi Indonesia dengan Pendekatan Ekonometrika Spasial Data Panel. Jurnal Matematika, Sains, dan Pembelajarannya, 8(2), pp. 176–187
  20. Maulan, A. & Suryowat, K. (2019). Spasial Panel Random Effect untuk Indeks Pembangunan Manusia di Daerah Istimewa Yogyakarta. Jurnal Statistika Industri dan Komputasi, 4(2), pp. 33–40
  21. Mendez, C., & Kataoka, M. (2024). Inflation and Spatial Spillovers in a Large Archipelago: Evidence from Indonesia. Economic Papers, 43(1), 91-103
  22. Millo, G. & Piras, G. (2012). Spatial Panel Data Models in R. Journal of Statistical Software
  23. Miranti, R. C., & Mendez, C. (2021). Social and Economic Convergence across Districts in Indonesia: A Spatial Econometric Approach. Bulletin of Indonesian Economic Studies. 59(3): 1-31
  24. Paradis, E. (2017). Moran’s Autocorrelation Coefficient in Comparative Methods
  25. Prasetyo, E., & Firdaus, M. (2022). Spatiotemporal Analysis of Regional Inflation in an Emerging Country: Evidence from Indonesia. Regional Science Policy & Practice. https://doi.org/10.1111/rsp3.12539
  26. Putra, A. S., Tong, G., & Pribadi, D. O. (2020). Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia. Sustainability, 12(4), 1638
  27. Rizal, M. S., & Lestari, N. (2023). Mitigating Economic Impacts of Health Crises: A Spatial Panel Data Approach in Indonesia. Economic Research Journal, 15(4), 320-336
  28. Sari, D. K., & Rahmawati, F. (2022). Relative Risk of COVID-19 Pandemic and Regional Inflation Convergence in Indonesia: Spatial Panel Data Approach. Optimum Jurnal Ekonomi dan Pembangunan. 14(1): 20-31
  29. Schabenberger, O. & Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Chapman & Hall/CRC
  30. Setiawan, M. A., & Iskandar, S. (2020). The Impact of Health Crises on Regional Economies: Evidence from Indonesia. Indonesian Journal of Economic Studies, 18(3), 145-162
  31. Suprayogi, M. A. (2023). Pemodelan Data Panel Spasial Pertumbuhan Ekonomi di Indonesia. Jurnal Sintak, 1(2), pp. 1–7
  32. Syukron, M. & Fahri, H. M. (2019). Pendekatan Regresi Panel untuk Pemodelan Jumlah Angkatan Kerja dan Penanaman Modal Luar Negeri terhadap PDRB Provinsi di Indonesia. Indonesian Journal of Applied Statistics, 1(2), pp. 100–116
  33. Tamara, I., Ispriyanti, D. & Prahutama, A. (2016). Pembentukan Model Spasial Data Panel Fixed Effect Menggunakan Gui Matlab (Studi Kasus: Kemiskinan di Jawa Tengah). Vol. 5, No. 3, pp. 417–426
  34. Widodo, E., Suriasni, E. & Kusumandari, G. E. (2019). Analisis Regresi Panel pada Kasus Kemiskinan di Indonesia. PRISMA, Prosiding Seminar Nasional Matematika, Semarang, Indonesia, Volume 2, pp. 710–717
  35. Waters, N. (2017). Tobler's First Law of Geography. John Wiley & Sons, Ltd, Canada. DOI: 10.1002/9781118786352.wbieg1011

Last update:

No citation recorded.

Last update: 2024-12-26 22:53:59

No citation recorded.