skip to main content

ANALYZING SOCIO-ECONOMIC RECOVERY ON SUMATRA ISLAND POST-COVID-19: A SPATIAL DURBIN MODEL APPROACH

Ibrah Hasanah Lubis  -  Department of Statistics, Faculty of Mathematics and Natural Sciences. Universitas Syiah Kuala, Jl. Syech Abdurrauf No. 3, Kopelma Darussalam, Banda Aceh, 23111 Aceh, Indonesia., Indonesia
Saiful Mahdi orcid scopus publons  -  Department of Statistics, Faculty of Mathematics and Natural Sciences. Universitas Syiah Kuala, Jl. Syech Abdurrauf No. 3, Kopelma Darussalam, Banda Aceh, 23111 Aceh, Indonesia., Indonesia
*Munawar Munawar orcid scopus publons  -  Department of Statistics, Faculty of Mathematics and Natural Sciences. Universitas Syiah Kuala, Jl. Syech Abdurrauf No. 3, Kopelma Darussalam, Banda Aceh, 23111 Aceh, Indonesia., Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The COVID-19 outbreak was designated as a public health emergency that disturbed the world from January 2020 to May 2023 by the World Health Organization. This outbreak has drastically changed the order of socio-economic life. According to data Gross Domestic Product, it was recorded to grow by 5.03% in 2023 according to data from the Central Statistics Agency, which is still slightly below the pre-pandemic level of 5.17% in 2018. At the regional level, only 6 provinces experienced a higher Gross Regional Domestic Product growth rate in 2023 compared to 2018. These figures highlight the need for recovery efforts to be made to restore the condition of the community and the environment so that the socio-economic activities of the community can run well again. This study uses Google mobility report data and panel data spatial regression analysis to determine the factors that influence socio-economic recovery on the island of Sumatra and how the influence between regions in the recovery effort. The data used is panel data for 273 observation days in eight provinces.  By integrating spatial panel data methods with mobility-based proxies, this approach offers a new framework that is rarely applied in studies of post-COVID-19 socio-economic recovery in Sumatra.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Materials
ANALYZING SOCIO-ECONOMIC RECOVERY ON SUMATRA ISLAND POST-COVID-19: A SPATIAL DURBIN MODEL APPROACH
Subject Secondary Data
Type Research Materials
  Download (17KB)    Indexing metadata
Keywords: Socio-Economic; Spatial Durbin Model; Google Mobility; COVID-19; Panel Regression
Funding: Universitas Syiah Kuala

Article Metrics:

  1. Alam, S., Ayub, M. S., Arora, S., & Khan, M. A. (2023). An investigation of the Imputation Techniques for Missing Values in Ordinal Data Enhancing Clustering and Classification Analysis Validity. Decision Analytics Journal, 9, 100341. https://doi.org/10.1016/j.dajour.2023.100341
  2. Astuti, A. B., Pramoedyo, H., Astutik, S., & Setiarini, A. N. D. (2024). Spatial Panel Modeling of Provincial Inflation in Indonesia to Mitigate Economic Impacts of Health Crises. Media Statistika, 17(1), 105–116. https://doi.org/10.14710/medstat.17.1.105-116
  3. Astuti, A. M., Setiawan, Zain, I., & Purnomo, J. D. T. (2020). A Review of Panel Data on Spatial Econometrics Models. Journal of Physics: Conference Series, 1490, 012032. https://doi.org/10.1088/1742-6596/1490/1/012032
  4. Bland, A. R., Barraclough, M., Trender, W. R., Mehta, M. A., Hellyer, P. J., Hampshire, A., Penner, I. K., Elliott, R., & Harenwall, S. (2024). Profiles of Objective and Subjective Cognitive Function in Post-COVID Syndrome, COVID-19 Recovered, and COVID-19 Naïve Individuals. Scientific Reports, 14(1), 13368. https://doi.org/10.1038/s41598-024-62050-x
  5. Brata, A. G., Pramudya, E. P., Astuti, E. S., Rahayu, H. C., & Heron, H. (2021). COVID-19 and Socio-Economic Inequalities in Indonesia: A Subnational-Level Analysis (ERIA Discussion Paper Series No. 371). ERIA. https://www.eria.org/publications/covid-19-and-socio-economic-inequalities-in-indonesia-a-subnational-level-analysis/
  6. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The Coefficient of Determination R Squared is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Computer Science, 7(e623). https://doi.org/DOI 10.7717/peerj-cs.623
  7. Elhorst, J. P. (2014). Spatial Econometrics: From Cross-Sectional Data to Spatial Panels. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40340-8
  8. Gao, J. (2021). Fundamentals of Spatial Analysis and Modelling (1st ed.). CRC Press. https://doi.org/10.1201/9781003220527
  9. Hasiru, L. S., Djakaria, I., & Hasan, I. K. (2022). Penerapan Model Spasial Durbin dengan Uji Lanjutan Local Indicator of Spatial Autocorrelation untuk Melihat Penyebaran Stunting di Kabupaten Bone Bolango. Jambura Journal of Probability and Statistics, 3(1), 19–28. https://doi.org/10.34312/jjps.v3i1.13083
  10. Hidayati, N., Karuna, E. E., & Alwansyah, M. A. (2024). A Panel Data Spatial Regression Approach for Modeling Poverty Data In Southern Sumatra. Journal Statistics and Data Science, 03(02)
  11. Kibtiah, T. M. & Medeleine. (2023). Indonesia’s Economic Recovery in a Post-Pandemic: Under the New Normal on Society 5.0. E3S Web of Conferences, 388, 04016. https://doi.org/10.1051/e3sconf/202338804016
  12. Mahendra, I. Y., Fannysa, F., Agusinta, L., & Suryobuwono, A. (2021). The Impact of PPKM Implementation and Travel Behavior Characteristics on the Transportation Mode Selection in Bekasi. Global Research on Sustainable Transport & Logistics, 1(1)
  13. Maloney, P., Kompaniyets, L., Yusuf, H., Bonilla, L., Figueroa, C., & Garcia, M. (2023). The Effects of Policy Changes and Human Mobility on the COVID-19 Epidemic in the Dominican Republic, 2020–2021. Preventive Medicine Reports, 36, 102459. https://doi.org/10.1016/j.pmedr.2023.102459
  14. Nurjanah, N., Rinaldi, A., & Putri, R. (2023). Spatial Error Model pada Tingkat Kemiskinan Kabupaten/Kota di Provinsi Lampung. Variance: Journal of Statistics and Its Applications, 5(1), 47–54. https://doi.org/10.30598/variancevol5iss1page47-54
  15. O’Sullivan, D., & Unwin, D. J. (2010). Geographic Information Analysis (2nd ed). New York: John Wiley
  16. Ozili, & Peterson, K. (2022). The Acceptable R-square in Empirical Modelling for Social Science Research. Social Research Methodology and Publishing Results, 1(1)
  17. Pribadi, D. O., Saifullah, K., Putra, A. S., Nurdin, M., Iman, L. O. S., & Rustiadi, E. (2021). Spatial Analysis of COVID-19 Outbreak to Assess the Effectiveness of Social Restriction Policy in Dealing with the Pandemic in Jakarta. Spatial and Spatio-Temporal Epidemiology, 39, 100454. https://doi.org/10.1016/j.sste.2021.100454
  18. Romanillos, G., García-Palomares, J. C., Moya-Gómez, B., Gutiérrez, J., Torres, J., López, M., Cantú-Ros, O. G., & Herranz, R. (2021). The City Turned Off: Urban Dynamics During the COVID-19 Pandemic Based on Mobile Phone Data. Applied Geography, 134, 102524. https://doi.org/10.1016/j.apgeog.2021.102524
  19. Saputro, D. R. S., Muhsinin, R. Y., & Widyaningsih, P. (2018). Spatial Autoregressive with a Spatial Autoregressive Error Term Model and Its Parameter Estimation with Two-Stage Generalized Spatial Least Square Procedure. Journal of Physics: Conference Series, 1217(012104)
  20. Sari, D. A., & Pasaribu, R. A. (2023). Humans as Individual and Social Beings in Everyday Life. International Journal of Students Education, 1(1): 78–80
  21. Serrao-Neumann, S., Crick, F., & Low Choy, D. (2018). Post-disaster Social Recovery: Disaster Governance Lessons Learnt from Tropical Cyclone Yasi. Natural Hazards, 93(3), 1163–1180. https://doi.org/10.1007/s11069-018-3345-5
  22. Setiadi, W., Rozi, I. E., Safari, D., Daningrat, W. O. D., Johar, E., Yohan, B., Yudhaputri, F. A., Lestari, K. D., Oktavianthi, S., Myint, K. S. A., Malik, S. G., Soebandrio, A., & on Behalf of the Wascove Team. (2022). Prevalence and Epidemiological Characteristics of COVID-19 After One Year of Pandemic in Jakarta and Neighbouring Areas, Indonesia: A Single Center Study. PLOS ONE, 17(5), e0268241. https://doi.org/10.1371/journal.pone.0268241
  23. Torres-Favela, M., & Luna, E. M. (2024). The Role of Informality in The Economic Growth, Employment, and Inflation During the COVID-19 Crisis. Latin American Journal of Central Banking, 100150. https://doi.org/10.1016/j.latcb.2024.100150
  24. Utomo, D. S. C., & Nugroho, A. (2022). Estimated Economic Growth Rate Based on Efek Decrease in PPKM Level Using Support Vector Regression Method. 4(2): 233–251
  25. Yang, M., Han, C., Cui, Y., & Zhao, Y. (2021). COVID-19 and Mobility in Tourism Cities: A Statistical Change-Point Detection Approach. Journal of Hospitality and Tourism Management, 47, 256–261. https://doi.org/10.1016/j.jhtm.2021.03.014
  26. Yang, T., Yu, N., Yang, T., & Hong, T. (2023). How Do Urban Socio-Economic Characteristics Shape A City’s Social Recovery? An Empirical Study of COVID-19 Shocks in China. International Journal of Disaster Risk Reduction, 90, 103643. https://doi.org/10.1016/j.ijdrr.2023.103643
  27. Zhang, J., Zhao, S., Peng, C., & Gong, X. (2022). Spatial Heterogeneity of the Recovery of Road Traffic Volume from the Impact of COVID-19: Evidence from China. Sustainability, 14(21), 14297. https://doi.org/10.3390/su142114297

Last update:

No citation recorded.

Last update: 2025-10-13 05:59:10

No citation recorded.