BibTex Citation Data :
@article{Medstat77259, author = {Alya Mirza Safira and Trimono Trimono and Kartika Maulida Hindrayani}, title = {STOCK PRICE PREDICTION IN INDONESIA USING EXTREME GRADIENT BOOSTING OPTIMIZED BY ADAPTIVE PARTICLE SWARM OPTIMIZATION}, journal = {MEDIA STATISTIKA}, volume = {18}, number = {1}, year = {2025}, keywords = {Stock Price; Fluctuation; Prediction; XGBoost; APSO}, abstract = {High volatility is a major problem in generating accurate predictions of stock prices. It also causes unstable predictions and increases the loss risk. Therefore, an adaptive prediction model that is able to adjust to dynamic data pattern changes is needed. This study aims to address these issues by developing an Extreme Gradient Boosting (XGBoost) model optimized using Adaptive Particle Swarm Optimization (APSO). XGBoost was chosen for its ability to handle nonlinear relationships and minimize overfitting, while APSO serves to adaptively adjust parameters to obtain the optimal combination of hyperparameters. The novelty of this research lies in the application of XGBoost-APSO integration in the context of stock price prediction in the Indonesian capital market, which is characterized by high volatility. The study was conducted using daily closing price data of PT Aneka Tambang Tbk (ANTM) shares from November 2020 to May 2025 to predict prices seven days ahead. The results show that the XGBoost-APSO model provides the best performance with a MAPE value of 0.2%, superior to XGBoost-PSO (2.58%) and standard XGBoost (2.91%). This approach effectively improves prediction accuracy and supports quick and accurate investment decision making, while contributing to the development of intelligent prediction systems in the Indonesian capital market.}, issn = {2477-0647}, pages = {105--115} doi = {10.14710/medstat.18.1.105-115}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/77259} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2025-10-18 14:10:51
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: